Biểu thức sau đây xác định với giá trị nào của x :
a) \(\sqrt{5x^2-3x-8}\)
b) \(\sqrt{5x^2+4x+7}\)
a, với giá trị nào của a thì căn thức sau có nghĩa \(\sqrt{\frac{a^2+1}{1-2a}}\)
b, biểu thức sau xác định với giá trị vào của x \(\sqrt{5x^2+4x+7}\)
Vời giá trị nào của x thì biểu thức sau đc xác định
a) \(\sqrt{\dfrac{5}{7-x^2}}\)
b) \(\sqrt{\dfrac{2x-1}{2-x}}\)
c) \(\sqrt{5x^2-3x-8}\)
với giá trị nào của x thì biểu thức sau đây xác định
a,\(\sqrt{x^2+2x+8}\)
b,\(\sqrt{x^2-4x-5}\)
a: ĐKXĐ: \(x\in R\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge5\\x\le-1\end{matrix}\right.\)
\(a,ĐK:x^2+2x+8\ge0\Leftrightarrow\left(x+1\right)^2+7\ge0\Leftrightarrow x\in R\\ b,ĐK:x^2-4x-5\ge0\Leftrightarrow\left(x+1\right)\left(x-5\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)
a, \(\sqrt{x^2+2x+8}\) = \(\sqrt{x^2+2x+\dfrac{1}{4}+\dfrac{31}{4}}\)= \(\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{31}{4}}\)
⇒x ∈ R thì bt được xác định
bài 1: tìm điều kiện xác định với giá trị nào của x thì các biểu thức sau đây xác định
a, \(\sqrt{-2x+3}\)
b, \(\sqrt{3x+4}\)
c, \(\sqrt{1+x\overset{2}{ }}\)
d, \(\sqrt{^{-3}_{3x+5}}\)
e, \(\sqrt{\dfrac{2}{x}}\)
help me :((
a/ ĐKXĐ : \(-2x+3\ge0\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
b/ ĐKXĐ : \(3x+4\ge0\)
\(\Leftrightarrow x\ge-\dfrac{4}{3}\)
c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x
d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5< 0\)
\(\Leftrightarrow x< -\dfrac{5}{3}\)
e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)
P.s : không chắc lắm á!
a) Với giá trị nào của x thì các biểu thức sau đây xác định :
\(\sqrt{3x+4}\) \(\sqrt{\dfrac{-1}{2x+2}}\)
b) Rút gọn biểu thức B = \(\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\) với x ≥ 0 , x ≠ 1
c) Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên
D = \(\dfrac{2\sqrt{x-1}}{\sqrt{x}+3}\)
Với giá trị nào của x thì các căn thức sau có nghĩa:
a, \(\sqrt{5x-10}\)
b, \(\sqrt{x^2-3x+2}\)
c, \(\sqrt{\dfrac{x+3}{5-x}}\)
d, \(\sqrt{x^2+4x-4}\)
a) ĐKXĐ: \(x\ge2\)
b) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
c) ĐKXĐ: \(\dfrac{x+3}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x+3}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow-3\le x< 5\)
Với giá trị nào của x thì mỗi căn thức sau đây có nghĩa:
a) \(\sqrt{\dfrac{x}{3}}\)
b) \(\sqrt{-5x}\)
c) \(\sqrt{4-x}\)
d) \(\sqrt{3x+7}\)
e) \(\sqrt{-3x+4}\)
f) \(\sqrt{\dfrac{1}{-1+x}}\)
g) \(\sqrt{1+x^2}\)
h) \(\sqrt{\dfrac{5}{x-2}}\)
a) Để \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)
b) Để \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)
c) Để \(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)
d) Để \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow x\ge-\dfrac{7}{3}\)
e) Để \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)
f) Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)
\(\Leftrightarrow-1+x>0\Leftrightarrow x>1\)
g) Để \(\sqrt{1+x^2}\) có nghĩa thì \(1+x^2\ge0\left(đúng\forall x\right)\)
h) \(\sqrt{\dfrac{5}{x-2}}\) có nghĩ thì \(\left\{{}\begin{matrix}\dfrac{5}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\)
\(\Leftrightarrow x-2>0\Leftrightarrow x>2\)
a. \(x\ge0\)
b. \(x< 0\)
c. \(x\le4\)
d. \(x\ge\dfrac{-7}{3}\)
e. \(x\le\dfrac{4}{3}\)
f. \(x>1\)
g. Mọi x
h. \(x>2\)
Tìm giá trị của x để biểu thức sau được xác định:
\(\sqrt{-x^2+5x-4}+\dfrac{1}{2x-7}\)
\(\sqrt{-x^2+5x-4}+\dfrac{1}{2x-7}\)
Được xác định khi:
\(\left\{{}\begin{matrix}-x^2+5x-4\ge0\\2x-7\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\left(x-4\right)\left(x-1\right)\ge0\\2x\ne7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}\left\{{}\begin{matrix}-\left(x-4\right)\ge0\\x-1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}-\left(x-4\right)< 0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\\x\ne\dfrac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}\left\{{}\begin{matrix}-x\ge-4\\x\ge1\end{matrix}\right.\\\left\{{}\begin{matrix}-x< -4\\x< 1\end{matrix}\right.\end{matrix}\right.\\x\ne\dfrac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}\left\{{}\begin{matrix}x\le4\\x\ge1\end{matrix}\right.\\\left\{{}\begin{matrix}x>4\\x< 1\end{matrix}\right.\end{matrix}\right.\\x\ne\dfrac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1\le x\le4\\x\ne\dfrac{7}{2}\end{matrix}\right.\)
1. với giá trị nào của x thì các biểu thức sau đây xác định
a,\(\sqrt{\dfrac{2}{x^2}}\)
b,\(\sqrt{\dfrac{-5}{x^2+6}}\)