Tính (x-3)+(y-5)=0
cho x + y+z=0. cmr 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)
cho a+b+c=0;a^2+b^2+c^2=0;a^3+b^3+c^3=0. tính a+b^2+c^3
2. Tính P=(1+x/y)*(1+z/x)*(1+z/y). Biết x+y+z=0 và x,y,z #0
3. Tính Q= 5.y^10-y^15+2016. Biết (x+1)^2016+(y-1)^2018=0
2. Tính P=(1+x/y)*(1+z/x)*(1+z/y). Biết x+y+z=0 và x,y,z #0
3. Tính Q= 5.y^10-y^15+2016. Biết (x+1)^2016+(y-1)^2018=0
1,cho hàm số y=f(x)=3x - 2. hãy tính f(-1); f(0); f(-2); f(3)
2,cho hàm số y=f(x)=2x^2 - 5. hãy tính f(1); f(0); f(-2)
3,cho hàm số y= f(x)=5 - 2x.hãy tính f(-1); f(0); f(-2); f(3)
a,hãy tính f(-1); f(0); f(-2); f(3)
b,tính các giá trị tương ứng của x với y=5;3;-1
1.
y=f(-1)=3*(-1)-2=-5
y=f(0)=3*0-2=-2
y=f(-2)=3*(-2)-2=-8
y=f(3)=3*3-2=7
Câu 2,3a làm tương tự,chỉ việc thay f(x) thôi.
3b
Khi y=5 =>5=5-2*x=>2*x=0=> x=0
Khi y=3=>3=5-2*x=>2*x=2=>x=1
Khi y=-1=>-1=5-2*x=>2*x=6=>x=3
f(-1)=3.1-2=3-2=1
f(0)=3.0-2=0-2=-2
f(-2)=3.(-2)-2=-6-2=-8
f(3)=3.3-2=9-2=7
1.
y=f(-1)=3*(-1)-2=-5
y=f(0)=3*0-2=-2
y=f(-2)=3*(-2)-2=-8
y=f(3)=3*3-2=7
Câu 2,3a làm tương tự,chỉ việc thay f(x) thôi.
3b
Khi y=5 =>5=5-2*x=>2*x=0
=> x=0
Khi y=3=>3=5-2*x=>2*x=2=>x=1
Khi y=-1=>-1=5-2*x=>2*x=6
=>x=3
cho x,y,z khác 0,x+y+z khác 0 thoả mãn 1/x+1/y+1/z=1/x+y+z. tính giá trị biểu thức A=(x+y)(y^3+z^3)(z^5+x^5)
cho x là số khác 0 sao cho :x/3=y/5.tính x-y/x+y
`x/3=y/5`
`=>5x=3y`
`=>(x-y)/(x+y)`
`=(5x-5y)/(5x+5y)`
`=(3y-5y)/(3y+5y)`
`=(-2y)/(8y)`
`=-1/4`
Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=\dfrac{x+y}{3+5}=\dfrac{x-y}{-2}=\dfrac{x+y}{8}\)
\(\Leftrightarrow\dfrac{x-y}{x+y}=\dfrac{-2}{8}=\dfrac{-1}{4}\)
Cho A = \(\dfrac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}.\left[1:\dfrac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3-y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
B = x - y
Chứng minh đẳng thức A = B
Tính giá trị của A, B tại x = 0; y = 0 và giải thích vì sao A ≠ B
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)
Bài 1 làm tính chia :
a,[5.(x-y)^4-3.(x-y)^3+4.(x-y)^2]:(y-x)^2
b,[(x+y)^5-2.(x+y)^4+3.(x+y)^3]:(3x-1)=0
Bài 2 tìm x biết :
(x^2-1/2x):2x-(3x-1)^2.(3x-1)=0
Tìm x,y thỏa mãn x^2 +5y^2 -4x -4xy +6y +5 = 0. Tính P=(x-3)^2023 + (y-2)^2023 +(x+y-5)^2023
Ta có:
\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)
nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)
Thay \(x=4;y=1\) vào \(P\), ta được:
\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)
\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)
\(=1-1=0\)
Vậy \(P=0\) khi \(x=4;y=1\).
tính A=2x+2y+3xy(x+y)+5(x^3y^2+x^2y^3)+4 biết x+y=0
B=(x+y)x^2-y^3(x+y)+(x^2-y^3)+3 biết x+y=-1
a/ \(A=2x+2y+3xy(x+y)+5(x^3y^2+x^2y^3)+4\\=2(x+y)+3xy(x+y)+5x^2y^2(x+y)+4\\=2.0+3xy.0+5x^2y^2.0+4=4\)
b/ \(B=(x+y)x^2-y^3(x+y)+(x^2-y^3)+3\\=(x+y)(x^2-y^3)+(x^2-y^3)+3\\=(x+y+1)(x^2-y^3)+3\\=(-1+1)(x^2-y^3)+3\\=0(x^2-y^3)+3\\=3\)