Giá trị của \(m^2+n^2\) khi \(m\sqrt{123-n^2}+n\sqrt{123-m^2}=123\).
Tìm giá trị của \(m^2+n^2\) khi \(m\sqrt{123-n^2}+n\sqrt{123-m^2}=123\).
Áp dụng BĐT Bunhiacôpxki:
\(123^2=\left(m\sqrt{123-n^2}+n\sqrt{123-m^2}\right)^2\)
\(\Rightarrow123^2\le\left(m^2+n^2\right)\left(123-n^2+123-m^2\right)\)
\(\Leftrightarrow123^2\le\left(m^2+n^2\right)\left(2.123-m^2-n^2\right)\)
Đặt \(m^2+n^2=x\)
\(\Rightarrow123^2\le x\left(2.123-x\right)\)
\(\Leftrightarrow x^2-2.x.123+123^2\le0\)
\(\Leftrightarrow\left(x-123\right)^2\le0\)
\(\Leftrightarrow x-123=0\Rightarrow x=123\)
TL:
N : M = 87207 : 123 = 709
Chúc bạn học tốt nha!
UwU
TL
Giá trị biểu thức = 709
Hc tốt
@Kirito
với m=123 n=87207 vậy 87207 nhân 123
kết quả bao nhiêu tự tính
Với 2 số m=11.(123)+8.(876) và n=2.(23)+2.(76),ta có m=kn. khi đó k = ?
Cho phương trình \(\left(2\log^2_3x-\log_3x-1\right)\sqrt{5^x-m}=0\)(với m là tham số thực). Số giá trị nguyên dương của m để phương trình đã cho có hai nghiệm phân biệt là:
A. 125 B. Vô số C. 124 D. 123
ĐKXĐ: \(x>0\)
\(\Leftrightarrow\left[{}\begin{matrix}2log_3^2x-log_3x-1=0\\5^x=m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}log_3x=1\\log_3x=-\frac{1}{2}\end{matrix}\right.\\5^x=m\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=3\\x=\frac{1}{\sqrt{3}}\end{matrix}\right.\\5^x=m\end{matrix}\right.\)
Xét pt \(5^x=m\)
- Nếu \(m>5^3=125\Rightarrow\left[{}\begin{matrix}x=3\\x=\frac{1}{\sqrt{3}}\end{matrix}\right.\) ko phải nghiệm của pt đã cho \(\Rightarrow\) phương trình có đúng 1 nghiệm
- Nếu \(m=5^3\Rightarrow\) pt có đúng 1 nghiệm \(x=3\)
- Nếu \(1< m< 5^{\frac{1}{\sqrt{3}}}\) phương trình có 3 nghiệm \(\left\{{}\begin{matrix}x=1\\x=\frac{1}{\sqrt{3}}\\x=log_5m\end{matrix}\right.\)
- Nếu \(5^{\frac{1}{\sqrt{3}}}< m< 5^3\) phương trình có 2 nghiệm: \(\left[{}\begin{matrix}x=3\\x=log_5m\end{matrix}\right.\)
- Nếu \(m=1\Rightarrow\) pt có 2 nghiệm \(\left[{}\begin{matrix}x=3\\x=\frac{1}{\sqrt{3}}\end{matrix}\right.\)
Vậy để pt có 2 nghiệm pb thì: \(\left[{}\begin{matrix}m=1\\5^{\frac{1}{\sqrt{3}}}< m< 5^3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\3\le m\le124\end{matrix}\right.\) \(\Rightarrow\) có \(123\) giá trị m thỏa mãn
2^m + 123 = 5^n
ai ko hiểu giải hộ cho tớ biết làm nên đố tí
Tìm nghiệm của phương trình
\((\sqrt{x^2+1}-x)^5+(\sqrt{x^2+1}+x)^5=123\)
Set \(\left\{{}\begin{matrix}\sqrt{x^2+1}-x=a\\\sqrt{x^2+1}+x=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^5+b^5=123\\\dfrac{1}{a^5}+\dfrac{1}{b^5}=123\end{matrix}\right.\)
Tính giá trị biểu thức
\(A=\sqrt{227-30\sqrt{2}}+\sqrt{123+22\sqrt{2}}\)
\(\sqrt{227-30\sqrt{2}}+\sqrt{123+22\sqrt{2}}\)
=\(\sqrt{225+2.15.\sqrt{2}+2}+\sqrt{121+2.11\sqrt{2}+2}\)
=\(\sqrt{\left(15+\sqrt{2}\right)^2}+\sqrt{\left(11+\sqrt{2}\right)^2}\)
=\(15+\sqrt{2}+11+\sqrt{2}\)
=\(26+2\sqrt{2}\)
Cho a b c thuộc z thỏa mãn a +b + c = 123 tìm số dư của phép chia a^2-b^2+c^2 cho 2
Cho a b c thuộc z thỏa mãn a +b + c = 123 tìm số dư của phép chia a^2-b^2+c^2 cho 2