\(\dfrac{3}{2}\sqrt{3x}-3x-5=-\dfrac{1}{2}\sqrt{3x}\) với ĐK \(x\ge0\)
rút gọn biểu thức sau:
\(N=\dfrac{5\sqrt{x}+3x}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{7}{\sqrt{x}+3}\left(x\ge0,x\ne1\right)\)
\(N=\dfrac{5\sqrt{x}+3x}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{7}{\sqrt{x}+3}\)
\(=\dfrac{5\sqrt{x}+3x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(3\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{7\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{5\sqrt{x}+3x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{3x+8\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{7\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{20\sqrt{x}+6x-10}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
Đề sai không vậy?
Ta có: \(N=\dfrac{3x+5\sqrt{x}}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{7}{\sqrt{x}+3}\)
\(=\dfrac{3x+5\sqrt{x}+3x+9\sqrt{x}-\sqrt{x}-3+7\sqrt{x}-7}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{6x+20\sqrt{x}-10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
1.\(\sqrt{-4x^2+25}=x\)
2.\(\sqrt{3x^2-4x+3}=1-2x\)
3. \(\sqrt{4\left(1-x\right)^2}-\sqrt{3}=0\)
4.\(\dfrac{3\sqrt{x+5}}{\sqrt{ }x-1}< 0\)
5. \(\dfrac{3\sqrt{x-5}}{\sqrt{x+1}}\ge0\)
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
Cho biểu thức D = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
với \(x\ne9,x\ge0\)
a) Rút gọn D
b)Tìm x để \(D< \dfrac{-1}{4}\)
a) \(D=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(=\dfrac{-3\sqrt{x}+3}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}-1}=\dfrac{-3}{\sqrt{x}+3}\)
b) \(D=-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{4}\)
\(\Leftrightarrow12>\sqrt{x}+3\Leftrightarrow\sqrt{x}< 9\)
\(\Leftrightarrow0\le x< 81\) và \(x\ne9\)
a) D=\(\left(\dfrac{2\sqrt{x}.\left(\sqrt{x}-3\right)+\sqrt{x}.\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}\right)\) \(:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(\Leftrightarrow D=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}\) \(.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(\Leftrightarrow D=\dfrac{-3-3\sqrt{x}}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}+1}\)
\(\Leftrightarrow D=\dfrac{-3.\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}+1}\)
\(\Leftrightarrow D=\dfrac{-3}{\sqrt{x}+3}\)
b) Để D\(< \dfrac{-1}{4}\) \(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}< \dfrac{-1}{4}\)
\(\Leftrightarrow12>\sqrt{x}+3\Leftrightarrow9>\sqrt{x}\Leftrightarrow81>x\ge0\)
Rút gọn (Giải chi tiết từng bước với ạ)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) (ĐK: x≥0;x≠9)
Với x ≥ 0; x ≠ 9 ta có:
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x-3}\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
Vậy \(A=\dfrac{3}{\sqrt{x}+3}\).
Rút gọn P
\(P=\dfrac{\sqrt{x}}{\sqrt{x}+5}+\dfrac{2\sqrt{x}}{\sqrt{x}-5}-\dfrac{3x+25}{x-25}\left(x\ge0,x\ne25\right)\)
\(P=\dfrac{x-5\sqrt{x}+2x+10\sqrt{x}-3x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{5\sqrt{x}-25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{5}{\sqrt{x}+5}\)
\(P=\dfrac{\sqrt{x}}{\sqrt{x}+5}+\dfrac{2\sqrt{x}}{\sqrt{x}-5}-\dfrac{3x+25}{x-25}\\ \Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}-\dfrac{3x+25}{\left(\sqrt{x}+5\right)}\\ \Leftrightarrow P=\dfrac{x-5\sqrt{x}+2x+10\sqrt{x}-3x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\\ \Leftrightarrow P=\dfrac{5\sqrt{x}-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\\ \Leftrightarrow P=\dfrac{5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(\Leftrightarrow P=\dfrac{5}{\sqrt{x}+5}\)
-> \(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}-\dfrac{3x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
-> \(\dfrac{x-5\sqrt{x}+2x+10\sqrt{x}-3x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
-> \(\dfrac{5\sqrt{x}-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
-> \(\dfrac{5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
-> \(\dfrac{5}{\left(\sqrt{x}+5\right)}\)
Rút gọn các biểu thức sau:
a) \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\), \(x\ge0\)
b) \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\sqrt{\dfrac{9x^3}{64}}\), \(x>0\)
c) \(C=\dfrac{y}{2}+\dfrac{3}{4}\sqrt{1+9y^2-6y}-\dfrac{3}{2}\), \(y\le\dfrac{1}{3}\)
a) Ta có: \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\)
\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+30\)
\(=14\sqrt{2x}+30\)
b) Ta có: \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\cdot\sqrt{\dfrac{9x^3}{64}}\)
\(=4\cdot\dfrac{5\sqrt{x}}{2}-\dfrac{8}{3}\cdot\dfrac{3\sqrt{x}}{2}-\dfrac{4}{3x}\cdot\dfrac{3x\sqrt{x}}{8}\)
\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)
\(=\dfrac{11}{2}\sqrt{x}\)
c) Ta có: \(\dfrac{y}{2}+\dfrac{3}{4}\sqrt{9y^2-6y+1}-\dfrac{3}{2}\)
\(=\dfrac{1}{2}y+\dfrac{3}{4}\left(1-3y\right)-\dfrac{3}{2}\)
\(=\dfrac{1}{2}y+\dfrac{3}{4}-\dfrac{9}{4}y-\dfrac{3}{2}\)
\(=-\dfrac{7}{4}y-\dfrac{3}{4}\)
Đề 7:
Bài 4:
\(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right).\left(\dfrac{\sqrt{x}-7}{\sqrt{x}+1}+1\right),\) với \(x\ge0,x\ne9\)
a) Rút gọn P
b) Tìm các giá trị của x để P \(\ge\) \(\dfrac{-1}{2}\)
c) Tìm GTNN của P
a: \(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+1}\cdot\dfrac{2}{\sqrt{x}+3}=-\dfrac{6}{\sqrt{x}+3}\)
b: P>=-1/2
=>P+1/2>=0
=>\(\dfrac{-6}{\sqrt{x}+3}+\dfrac{1}{2}>=0\)
=>\(\dfrac{-12+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}>=0\)
=>căn x-9>=0
=>x>=81
c: căn x+3>=3
=>6/căn x+3<=6/3=2
=>-6/căn x+3>=-2
Dấu = xảy ra khi x=0
Tìm đk để các biểu thức sau có nghĩa:
1. \(\sqrt{3x^{2}-x+2}\)
2. \((\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{2-\sqrt{x}}): \dfrac{x}{\sqrt{2x+1}}\)
1: ĐKXĐ: 3x^2-x+2>=0
=>x thuộc R
2: ĐKXĐ: x>=0 và căn x-1<>0 và 2-căn x<>0 và 2x+1>0 và x<>0
=>x>0 và x<>1 và x<>4