Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Ngọc
Xem chi tiết
lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2019 lúc 18:09

\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)

\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)

\(A=0\)

\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)

\(B=\frac{1}{4}\)

\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)

\(C=\frac{3}{2}\)

\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)

\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)

\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)

\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)

Ngoc Anh Nguyen
30 tháng 4 2019 lúc 11:15

Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là

Nguyen ANhh
Xem chi tiết
Trần Quốc Lộc
16 tháng 7 2020 lúc 17:49

\(\text{1) }cos^2\left(x-\frac{\pi}{6}\right)-sin^2\left(x-\frac{\pi}{6}\right)=sin\left(x+\frac{\pi}{3}\right)\\ \Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=cos\left(\frac{\pi}{6}-x\right)\\ \Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+m2\pi\\2x-\frac{\pi}{3}=x-\frac{\pi}{6}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{m2\pi}{3}\\x=\frac{\pi}{6}+n2\pi\end{matrix}\right.\\\Leftrightarrow x=\frac{\pi}{6}+\frac{k2\pi}{3} \)

\(2\text{) }sin^4x-sin^4\left(x+\frac{\pi}{2}\right)=sin\left(x+\frac{\pi}{3}\right)\\ \Leftrightarrow sin^4x-cos^4x=sin\left(x+\frac{\pi}{3}\right)\\ \Leftrightarrow sin^2x-cos^2x=sin\left(x+\frac{\pi}{3}\right)\\ \Leftrightarrow cos\left(\pi-2x\right)=cos\left(\frac{\pi}{6}-x\right)\\ \Leftrightarrow\left[{}\begin{matrix}\pi-2x=\frac{\pi}{6}-x+m2\pi\\\pi-2x=x-\frac{\pi}{6}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{6}-m2\pi\\x=\frac{7\pi}{18}-\frac{n2\pi}{3}\end{matrix}\right.\)

\(3\text{) }pt\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}=cos\frac{\pi}{3}\\ \Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+m2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+m2\pi\\x=n2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 7 2020 lúc 17:53

a/

\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{6}-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{6}+\frac{k2\pi}{3}\)

b/

\(\Rightarrow sin^4x-cos^4x=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow-cos2x=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow cos2x=-sin\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{5\pi}{6}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x=x+\frac{5\pi}{6}+k2\pi\\2x=-x-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 7 2020 lúc 17:55

c/

\(\Leftrightarrow cos^3\left(x-\frac{\pi}{3}\right)=\frac{1}{8}\)

\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=k2\pi\end{matrix}\right.\)

Bảo Ken
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2019 lúc 20:47

\(\frac{2cos^2x-1}{2cot\left(\pi+\frac{\pi}{4}+x\right).sin^2\left(\frac{\pi}{4}+x\right)}=\frac{cos2x}{2cot\left(\frac{\pi}{4}+x\right).sin^2\left(\frac{\pi}{4}+x\right)}=\frac{cos2x}{2cos\left(\frac{\pi}{4}+x\right).sin\left(\frac{\pi}{4}+x\right)}\)

\(=\frac{cos2x}{sin\left(\frac{\pi}{2}+2x\right)}=\frac{cos2x}{cos2x}=1\)

Thiên Yết
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 7:11

1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)

\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)

Vậy...

2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)

\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)

\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)

\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)

Vậy...

3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)

\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)

\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)

Vậy...

4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)

\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)

\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)

Vậy...

5, Xem lại đề

6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)

\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)

Vậy...

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 9 2020 lúc 15:00

a.

\(sin\left(2x+1\right)=-cos\left(3x-1\right)\)

\(\Leftrightarrow sin\left(2x+1\right)=sin\left(3x-1-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1-\frac{\pi}{2}=2x+1+k2\pi\\3x-1-\frac{\pi}{2}=\pi-2x-1+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+2+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

b.

\(sin\left(2x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{4}-x+k2\pi\\2x-\frac{\pi}{6}=\frac{3\pi}{4}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 9 2020 lúc 15:04

c.

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=-sin\left(x-\frac{2\pi}{5}-\pi\right)\)

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=sin\left(x-\frac{2\pi}{5}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{2\pi}{3}=x-\frac{2\pi}{5}+k2\pi\\3x+\frac{2\pi}{3}=\frac{7\pi}{5}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{8\pi}{15}+k\pi\\x=\frac{11\pi}{60}+\frac{k\pi}{2}\end{matrix}\right.\)

d.

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{4}+x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{3}=\frac{\pi}{4}+x+k2\pi\\4x+\frac{\pi}{3}=-\frac{\pi}{4}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{60}+\frac{k2\pi}{5}\end{matrix}\right.\)

Tường Nguyễn Thế
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 5 2019 lúc 9:26

\(A=4sinx.cosx.sin\left(-3x\right)+cosx\)

\(=-2sin2x.sin3x+cosx\)

\(=cos5x-cosx+cosx\)

\(=cos5x\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 22:45

a) Ta có:

      \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x.\frac{{\sqrt 2 }}{2} + \cos x.\frac{{\sqrt 2 }}{2}} \right) = \sin x + \cos x\)

b) Ta có:

\(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{\tan \frac{\pi }{4} - \tan x}}{{1 + \tan \frac{\pi }{4}\tan x}} = \frac{{1 - \tan x}}{{1 + \tan x}}\;\)

quangduy
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2019 lúc 20:19

\(A=2cosx-3cosx-sin\left(3\pi+\frac{\pi}{2}-x\right)+tan\left(\pi+\frac{\pi}{2}-x\right)\)

\(A=-cosx+sin\left(\frac{\pi}{2}-x\right)+tan\left(\frac{\pi}{2}-x\right)\)

\(A=-cosx+cosx+cotx=cotx\)

\(B=2cosx+sin\left(4\pi+\pi-x\right)+sin\left(2\pi-\frac{\pi}{2}+x\right)-sinx\)

\(B=2cosx+sin\left(\pi-x\right)+sin\left(-\frac{\pi}{2}+x\right)-sinx\)

\(B=2cosx+sinx-sin\left(\frac{\pi}{2}-x\right)-sinx\)

\(B=2cosx-cosx=cosx\)