Cho hai đa thức A= 7x2y3-6xy4+5x3y-1
Bài 1: Cho hai đa thức A= 3x5 - 7x2y3 +15x2y ; B= 5x2y - 15xy2 + x5 +8
a) Tính giá trị của mỗi đa thức A,B tại x= -1 , y= 0
b) Tính A+B , A-B
Giúp mik với mik sắp thi rồi
Thay x=-1; y=0 vào A và B:
A= 3x5 -7x2y3 + 15x2y = 3.(-1)5 - 7(-1)2.03 + 15(-1)2.0= -3 - 0 + 0 = -3
B= 5x2y - 15xy2 + x5 + 8 = 5.(-1)2.0 - 15.(-1).02 + (-1)5 + 8 = 0 + 0 + (-1) + 8 = 7
b, A+B= (3x5 - 7x2y3 + 15x2y) + (5x2y - 15xy2 + x5 + 8)
A+B = (3x5 + x5) - 7x2y3 + (15x2y + 5x2y) - 15xy2 + 8
A+B= 4x5 - 7x2y3 + 20x2y - 15xy2 + 8
---
A-B= (3x5 - 7x2y3 + 15x2y) - (5x2y - 15xy2 + x5 + 8)
A-B= (3x5 - x5) - 7x2y3 + (15x2y - 5x2y) + 15xy2 - 8
A-B= 2x5 - 7x2y3 + 10x2y + 15xy2 - 8
Tìm đa thức K biết: ( 5x2 - 7x2y3 + 3y4 ) - K = 3x2 - 7x2y3 - 3y4
\(K=5x^2-7x^2y^3+3y^4-3x^2+7x^2y^3+3y^4=2x^2+6y^4\)
\(\Rightarrow K=5x^2-7x^2y^3+3y^4-3x^2+7x^2y^3+3y^4\)
\(\Rightarrow K=2x^2+6y^4\)
Tìm đa thức K biết: ( 5x2 - 7x2y3 + 3y4 ) - K = 3x2 - 7x2y3 - 3y4
3x^2-8x+5-k=-2k+4x-6+x^2
\(\left(5x^2-7x^2y^3+3y^4\right)-K=3x^2-7x^2y^3-3y^4\)
\(\Rightarrow K=\left(5x^2-7x^2y^3+3y^4\right)-\left(3x^2-7x^2y^3-3y^4\right)\)
\(\Rightarrow K=5x^2-7x^2y^3+3y^4-3x^2+7x^2y^3+3y^4\)
\(\Rightarrow K=2x^2+6y^4\)
________________
\(3x^2-8x+5-K=-2K+4x-6+x^2\)
\(\Rightarrow-K+2K=\left(4x-6+x^2\right)-\left(3x^2-8x+5\right)\)
\(\Rightarrow K=4x-6+x^2-3x^2+8x-5\)
\(\Rightarrow K=-2x^2+12x-11\)
Kết quả thu gọn đa thức P = 3x3y – 6xy3 + 2x3y + 6xy3 bằng
A. x3y – 12xy3 B. 5x3y C. 6x3y D. 5x3y - 12xy3
`P=3x^3 y-6xy^3 +2x^3 y+6xy^3`
`P=(3x^2 y+2x^3 )-(6xy^3 -6xy^3)`
`P=5x^3 y`
`=>B`
cho đa thức
A =16x4-8x3y+7x2y2-9x4 ; B= -15x4+3x3y-5x2y2-6y4 ; C = 5x3y+3x2y2+17y4+1
chứng minh một trong ba đa thức này có giá trị dương với mọi x, y
Ta cộng cả ba đa thức vói nhau có :
$A+B+C = (16x^4-8x^3y+7x^2y^2-9y^4) + (-15x^4+3x^3y - 5x^2y^2-6y^4) + (5x^6y+ 3x^2y^2+17y^4+1)$
$ = x^4 + 5x^2y^2 + 2y^4 + 1 > 0 $
Do đó một trọng ba đa thức trên có giá trị dương với mọi x,y.
Cho A = 16x4 - 8x3y + 7x2y2 - 9y4 ; -15x4 + 3x3y - 5x2y2 - 6y4 ; C = 5x3y + 3x2y2 + 17y4 + 1 . Chứng minh rằng : Ít nhất 1 trong 3 đa thức có giá trị dương vs mọi x , y
Mới hok lớp 1 nên ko bt lm he
Cho các đa thức:
A= 16x4 - 3x3y + 7x2y2 - 9y4
B = -15x4 + 3x3y - 5x2y2 - 6y4
C = 5x3y + 3x2y2 + 17y4 + 1
Chứng minh rằng ít nhất một trong 3 đa thức này có giá trị dương với mọi x,y
Bài 1: Phân tích đa thức thành nhân tử
a/ 36x2 - 12x + 1
b/ 5x3y + 10x2y + 5xy
c/ 9x2 – 6xy + y2 – 25
d/ x2 + 8x + 7
a) \(=\left(6x\right)^2-2.6x.1+1=\left(6x-1\right)^2\)
b) \(=5xy\left(x^2+2x+1\right)=5xy\left(x+1\right)^2\)
c) \(=\left(3x-y\right)^2-25=\left(3x-y-5\right)\left(3x-y+5\right)\)
d) \(=x\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)
bài 1: Thực hiện phép tính
a/ (4x-3) (2x+5)
B/ (14X5y - 7x2y3 + 3X4y) :7x2y
c/ (2x3-3x2-11x +6):(x-3)
bài 2: Phân thức đa thức thành nhân tử
a/ x3-25x
b/ x2-2xy+3x-6y
c/ 8x3+4x2-6x-27
Bài 2:
a: =x(x^2-25)
=x(x-5)(x+5)
b: =x(x-2y)+3(x-2y)
=(x-2y)(x+3)
c: =(2x-3)(4x^2+6x+9)+2x(2x-3)
=(2x-3)(4x^2+8x+9)
Viết các đa thức sau dưới dạng tổng của các đơn thức rồi thu gọn các đơn thức đồng dạng(nếu có)và tìm bậc của những đa thức đó với tập hợp các biến.
a) 3x2y3 - 2xy2(x2 + y2) + 3x2y2(x + y) + 5x3y(x - y)
b) (x2 - y2) (x2 + y2) - 3xy2(x + y) + 5x2y2 + x2y(x - y)
c) 3x(x2y + xy2) - 7xy(x2 - y2) - x(3y2 - 2xy2 - 5y - 1)
a: =3x^2y^3-2x^3y^2-2xy^4+3x^3y^2+3x^2y^3+5x^4y-5x^3y^2
=6x^2y^3-4x^3y^2-2xy^4+5x^4y
Bậc là 5
b: =x^4-y^4-3x^2y^2-3xy^3+5x^2y^2+x^3y-x^2y^2
=x^4-y^4+x^2y^2-3xy^3+x^3y
Bậc là 4
c: =3x^3y+3x^2y^2-7x^3y+7xy^3-3xy^2+2x^2y^2+5xy+x
=-4x^3y+5x^2y^2+7xy^3-3xy^2+5xy+x
bậc là 4