Cho đa thức P(x) = 2(x-3)2 + 5
Chứng minh rằng đa thức đã cho không có nghiệm
Cho đa thức P(x)=2(x-3)^2+5. Chứng minh rằng đa thức đã cho không có nghiệm
có: 2(x-3)^2 >hoặc = 0 với mọi x
suy ra: 2(x-3)^2+5 >hoặc = 5 với mọi x
suy ra: P(x) > 0 với mọi x
suy ra: đa thức không có nghiệm (đpcm)
giả sử
=> P(x)=2(x-3)^2+5=0
=> 2(x-3)^2=-5
=> (x-3)^2=-2.5
vì (x-3)^2 lớn hơn hoặc bằng 0 nên x ko tồn tại
=> đa thức trên vô nghiệm
giả sử
=> P(x)= 2(x-3)^2+5=0
=> 2(x3)^2 = -5
Vì (x-3)^2 lướn hơn ..........
=> đa thức trên vô nhiệm
Cho đa thức P(x) = 2(x-3)2 + 5
Chứng minh rằng đa thức đã cho không có nghiệm
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow2.\left(x-3\right)^2+5\ge5\forall x\)
Vậy đa thức trên ko có nghiệm
Câu 1 : Cho đa thức : P(x) = x^2 + 2x +2
Chứng minh rằng đa thức đã cho ko có nghiệm.
Câu 2 : Cho đa thức : P(x) = 2 ( x-3)^2 + 5
Chứng minh rằng đa thức đã cho ko có nghiệm.
Câu 3 : Cho đa thức : P(x) = -x^4x-7
Chứng minh rằng đa thức đã cho ko có nghiệm.
Câu 1:
Ta có:
\(P\left(x\right)=x^2+2x+2\\ P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\\ P\left(x\right)=x\left(x+1\right)+\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)
nên\(\left(x+1\right)^2+1\ge1\)
\(\Rightarrow P\left(x\right)\ge1\ne0\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm
Câu 2:
Ta có:
\(\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2+5\ge5\ne0\\ \Rightarrow P\left(x\right)\ne0\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm.
Câu 3:
Vì \(4x⋮2\) nên \(4x\) nên là số chẵn.
\(\Rightarrow x^{4x}\ge0\\\Rightarrow-x^{4x}\le0\\ \Rightarrow-x^{4x}-7\le-7\ne0\\ \Rightarrow P\left(x\right)\ne0 \)
Vậy đa thức \(P\left(x\right)\) không có nghiệm.
Cho đa thức P(x) = x3 - x + 5. Chứng minh rằng đa thức P(x) không có nghiệm nguyên.
\(P\left(x\right)=x^3-x+5=0\)
\(x^3-x=-5\)
\(x.\left(x^2-1\right)=-5\)
Lập bảng ( vì đề nhủ c/m nghiệm nguyên)
Loại cả 4 cái
vậy...
Ta có : P( x ) = x3 - x + 5
= x ( x2 - 1 ) + 5
= x ( x - 1 ) ( x + 1 ) + 5
Gọi P( x ) có nghiệm nguyên là : x = a
\( \implies\)P( a ) = a ( a - 1 ) ( a + 1 ) + 5 = 0
\( \implies\) a ( a - 1 ) ( a + 1 ) = - 5
Vì a là số nguyên \( \implies\) a ; ( a - 1 ) ; ( a + 1 ) là ba số nguyên liên tiếp . Do đó chúng chia hết cho 2
Mà - 5 không chia hết cho 2
\( \implies\) a ( a - 1 ) ( a + 1 ) không thể bằng - 5
\( \implies\) Không có giá trị a nguyên nào thỏa mãn P( a ) = 0
Vậy đa thức P( x ) = x3 - x + 5 không có nghiệm nguyên ( đpcm )
1/ Chứng minh M(x)= -x2 + 5 không có nghiệm.
2/ Tìm hệ số a của đa thức M(x)= a x2 + 5 x - 3, biết rằng đa thức này có một nghiệm là \(\dfrac{1}{2}\)
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
Cho đa thức : P(x) = 2 (x - 3)2 + 5
Chứng minh rằng : Đa thức đã cho không có nghiệm
P/S:help me vs!!!
Ta có: với mọi x ta luôn được :(x-3)2 \(\ge\) 0
=> 2(x-3)2 \(\ge\) 0
=> 2(x-3)2 +5 \(\ge\) 5
Vậy đa thức P(x) = 2(x-3)2+5 vô nghiệm.
1. Cho đa thức A(x) = ax2 + bx +c (với a,b,c là các hằng số). Chứng minh rằng
a) Nếu a+b+c=0 thì x=1 là một nghiệm của đa thức A(x)
b) Nếu a-b+c=0 thì x=-1 là một nghiệm của đa thức A(x)
2. Cho hai đa thức A(x) và Q(x) đều có nghiệm. Có thể khẳng định được rằng đa thức P(x) + Q(x) luôn có nghiệm hay không? Minh họa cho câu trả lời của em bằng một ví dụ.
3. Cho hai đa thức M(x) và N(x) có cùng một nghiệm. Có thể khẳng định được rằng đa thức M(x) + N(x) luôn có nghiệm hay không? Cho ví dụ minh họa cho câu trả lời của em.
Giúp mình với, mình cần gấp.
1. Cho đa thức A(x) = ax2 + bx +c (với a,b,c là các hằng số). Chứng minh rằng
a) Nếu a+b+c=0 thì x=1 là một nghiệm của đa thức A(x)
b) Nếu a-b+c=0 thì x=-1 là một nghiệm của đa thức A(x)
2. Cho hai đa thức A(x) và Q(x) đều có nghiệm. Có thể khẳng định được rằng đa thức P(x) + Q(x) luôn có nghiệm hay không? Minh họa cho câu trả lời của em bằng một ví dụ.
3. Cho hai đa thức M(x) và N(x) có cùng một nghiệm. Có thể khẳng định được rằng đa thức M(x) + N(x) luôn có nghiệm hay không? Cho ví dụ minh họa cho câu trả lời của em.
Giúp mình với, mình cần gấp.
Cho đa thức f(x) có các hệ số nguyên. Biết f(1).f(2)=2013. Chứng minh rằng đa thức f(x) không có nghiệm nguyên
Giả sử f(x) có nghiệm nguyên là a, Khi đó f(x)=(x−a)Q(x)
Thay x =1;2 vào biểu thức trên ta được : f(1)=(1−a)Q(1) và f(2)=(2−a)Q(2)
=> f(1).f(2)=(a−1)(a−2)Q(1).Q(2)
Hay 2013=(a−1)(a−2).Q(1)Q(2)
Ta có VT không chia hết cho 2, VP chia hết cho 2 ( vì (a−1)(a−2) chia hết cho 2 )
=> PT vô nghiệm
=> f(x) không có nghiệm nguyên