Những câu hỏi liên quan
Nguyễn Thị Thùy Dung
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 3 2019 lúc 19:58

Ta có \(x+y+z+t\ge4\sqrt[4]{xyzt}\Rightarrow xyzt\le1\)

Áp dụng BĐT: \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{2}{\sqrt{ab}+1}\)

\(A=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\ge\frac{2}{xy+1}+\frac{2}{zt+1}=2\left(\frac{1}{xy+1}+\frac{1}{zt+1}\right)\)

\(A\ge2.\left(\frac{2}{\sqrt{xyzt}+1}\right)\ge\frac{2.2}{1+1}=2\)

\(\Rightarrow A_{max}=2\) khi \(x=y=z=t=1\)

Angela jolie
Xem chi tiết
Diệu Huyền
3 tháng 2 2020 lúc 10:48

\(M\left(x+y+z\right)=\left(z^2+y^2+z^2\right)+2+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)

\(=5+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)

\(\ge5+2\left(y+z\right)+2\left(z+x\right)+2\left(x+y\right)=5+4\left(x+y+z\right)\) ( Sử dụng BĐT Cô-si cho 2 số dương ý)

\(\Rightarrow M\ge\frac{5}{x+y+z}+4\)

Mặt khác: \(\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)=9\)

\(\Rightarrow x+y+z\le3\)

Do đó: \(M\ge\frac{5}{3}+4=\frac{17}{3}\)

\(M=\frac{17}{3}\Leftrightarrow x=y=z=1\)

\(\Rightarrow Min_A=\frac{17}{3}\)

Khách vãng lai đã xóa
Loan Trinh
Xem chi tiết
Nguyễn Thị Nguyệt Ánh
Xem chi tiết
Akai Haruma
29 tháng 5 2020 lúc 0:08

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+y+z)\geq (1+1+1)^2\)

\(\Leftrightarrow A.1\geq 9\Leftrightarrow A\geq 9\)

Vậy GTNN của $A$ là $9$. Giá trị này đạt được tại $x=y=z=\frac{1}{3}$

Akai Haruma
29 tháng 5 2020 lúc 0:08

Bài 2:

Hoàn toàn tương tự bài 1

$S(a+b+c)\geq (1+1+1)^2$ theo BĐT Bunhiacopxky

$\Leftrightarrow S.3\geq 9\Rightarrow S\geq 3$

Vậy GTNN của $S$ là $3$ khi $a=b=c=1$

Akai Haruma
29 tháng 5 2020 lúc 0:11

Bài 3:

Áp dụng BĐT Bunhiacopxky như các bài trên ta có:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$

Mà $0< x+y+z\leq 6$ nên $\frac{9}{x+y+z}\geq \frac{9}{6}=\frac{3}{2}$

Do đó $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=z=2$

Bài 4:

Áp dụng BĐT Cô-si cho các số dương ta có:

$a^4+b^4+c^4+d^4\geq 4\sqrt[4]{a^4b^4c^4d^4}=4abcd$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=d>0$

HHHHH
Xem chi tiết
✰Ťøρ ²⁷ Ťɾїệʉ Vâɳ ŇD✰
27 tháng 3 2020 lúc 15:29

Tham khảo link này nha

https://olm.vn/hoi-dap/detail/243232541423.htm

Khách vãng lai đã xóa
Trần Trung Hiếu
Xem chi tiết
Lê Chí Cường
Xem chi tiết
Trương Ngọc Phương Thủy
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 6 2019 lúc 21:30

\(P=x+y+z+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge x+y+z+\frac{18}{x+y+z}\)

\(P\ge x+y+z+\frac{1}{x+y+z}+\frac{17}{x+y+z}\)

\(P\ge2\sqrt{\left(x+y+z\right)\frac{1}{\left(x+y+z\right)}}+\frac{17}{1}=19\)

\(P_{min}=19\) khi \(x=y=z=\frac{1}{3}\)

Kakarot Songoku
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 6 2020 lúc 22:08

\(S=x-\frac{xy^2}{1+y^2}+y-\frac{yz^2}{1+z^2}+z-\frac{zx^2}{1+x^2}\)

\(S\ge x+y+z-\frac{xy^2}{2y}-\frac{yz^2}{2z}-\frac{zx^2}{2x}\)

\(S\ge3-\frac{1}{2}\left(xy+yz+zx\right)\ge3-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)

\(S_{min}=\frac{3}{2}\) khi \(x=y=z=1\)