Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng nguyễn anh thảo
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
12 tháng 4 2021 lúc 19:05

Đặt bthuc = A nhé

ĐKXĐ : \(2x\ne3y\)

\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)

\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)

\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)

Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3

hacker tit
Xem chi tiết
Nunalkes Thanh
Xem chi tiết
Phạm Thị Vân Anh
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
24 tháng 9 2017 lúc 15:58

\(D=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)

\(D=\left[\left(2x\right)^3+\left(3y\right)^3\right]-\left[\left(2x\right)^3-\left(3y\right)^3\right]\)

\(D=\left(2x\right)^3+\left(3y\right)^3-\left(2x\right)^3+\left(3y\right)^3\)

\(D=2.\left(3y\right)^3\)

Thay \(y=-1\) vào biểu thức vừa rút gọn ta có :

\(2.\left(3.-1\right)^3=2.-27=-54\)

Vậy kết quả là \(-54\)

Lưu Đức Long
Xem chi tiết
Trần Thanh Phương
21 tháng 10 2018 lúc 21:03

\(A=2x^2-6xy+9y^2-12x+2017\)

\(A=x^2+x^2-6xy+\left(3y\right)^2-12x+2014\)

\(A=\left(x^2-2\cdot x\cdot6+6^2\right)+\left[\left(3y\right)^2-2\cdot3y\cdot x+x^2\right]+1978\)

\(A=\left(x-6\right)^2+\left(3y-x\right)^2+1978\ge1978>0\forall x;y\)

P.s: 1978 năm sinh me t :)

Lưu Đức Long
21 tháng 10 2018 lúc 21:09

Cám ơn bạn nhiều

Công Chúa Vui Vẻ
Xem chi tiết
Hannah Smith
Xem chi tiết
Minh Anh
8 tháng 10 2016 lúc 15:01

a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3+1\right)-\left(x^3-1\right)\)

\(=x^3+1-x^3+1\)

 \(=2\)

Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.

b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)

\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

\(=27\)

Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.

c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(=-65\)

Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.

d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

\(=0\)

Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.

Nunalkes Thanh
Xem chi tiết
Yen Nhi
30 tháng 10 2021 lúc 22:25

\(2x^3y-2xy^3-4xy^2-2xy\)

\(=2xy.\left(x^2-y^2-2y-1\right)\)

\(=2xy.[x^2-\left(y^2+2y+1\right)]\)

\(=2xy.[x^2-\left(y+1\right)^2]\)

\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)

Vậy chọn đáp án A

Khách vãng lai đã xóa
Bùi Nguyễn Châu Anh
12 tháng 1 2022 lúc 14:20

chọn A

Khách vãng lai đã xóa