chứng minh 4x^2+9y^2+1>=6xy+2x+3y với mọi x,y
1) Chứng minh bt sau ko phụ thuộc vào biến
a) ( x-1)^ 3 - ( x+4) ( x^2- 4x+16) + 3x ( x-1)
b) (2x+3y) ( 4x^2- 6xy + 9y^2) - ( 2x - 3y ) ( 4x^2+ 6xy + 9y^2) - 27 ( 2y^3- 1 )
c) y( x^2- y^2) ( x^2+ y^2) - y( x^4- y^4)
d) ( x-1)^3- ( x-1) ( x^2+ x + 1 ) - 3 ( 1-x).x
Tìm tập xác định của biểu thức, rút gọn biểu thức, rồi tính giá trị của biểu thức với x = \(\dfrac{1}{3}\) , y = -2:
[\(\dfrac{2x}{2x-3y}\) - \(\dfrac{9y^2\left(3y+4x\right)}{8x^3-37y^3}\) - \(\dfrac{24xy}{4x^2+6xy+9y^2}\)][2x + \(\dfrac{3y\left(3y+4x\right)}{2x-3y}\)]
Đặt bthuc = A nhé
ĐKXĐ : \(2x\ne3y\)
\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)
\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)
\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)
Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3
tính:
a,(x+1)*(x^2-x+1)..
b,:(0.1x+y^2)*(0.01x^2-0.1xy^2+y^4)..
c, (2x+3y)*(4x^2-6xy+9y2)..
d,(3-2x)*(9+6x+4x^2).
e,(1/2x-1/3y)*(1/4x^2+1/6xy+1/9y^2
38. Chọn câu sai:
A. 16x^2 (x-y) - x + y= (2x-1) (2x+1)(4x^2+1)(x-y)
B. 16x^3 - 54y^5 = 2(2x -3y) (4x^2 + 6xy + 9y^2)
C. 16x^5 - 54y = 2(2x-3y) (2x + 3y)^2
D. 16x^4 (x-y) - x + y = (4x^2 -1 (4x^2 +1) (x-y)
Tính giá trị biểu thức
D= \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\) tại x= -1,0008 và y=-1
giúp mk vs
\(D=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)
\(D=\left[\left(2x\right)^3+\left(3y\right)^3\right]-\left[\left(2x\right)^3-\left(3y\right)^3\right]\)
\(D=\left(2x\right)^3+\left(3y\right)^3-\left(2x\right)^3+\left(3y\right)^3\)
\(D=2.\left(3y\right)^3\)
Thay \(y=-1\) vào biểu thức vừa rút gọn ta có :
\(2.\left(3.-1\right)^3=2.-27=-54\)
Vậy kết quả là \(-54\)
Chứng minh rằng A= 2x^2-6xy+9y^2-12x+2017>0 với mọi x;y
\(A=2x^2-6xy+9y^2-12x+2017\)
\(A=x^2+x^2-6xy+\left(3y\right)^2-12x+2014\)
\(A=\left(x^2-2\cdot x\cdot6+6^2\right)+\left[\left(3y\right)^2-2\cdot3y\cdot x+x^2\right]+1978\)
\(A=\left(x-6\right)^2+\left(3y-x\right)^2+1978\ge1978>0\forall x;y\)
P.s: 1978 năm sinh me t :)
Thu gọn rồi tính:
A=(x-5y)^2 +(2x-3y)^3 -(x-y)^3 -(2x+3y)(4x^2-6xy+9y^2)
Tại x=1/2 y=-1/2
chứng minh các biểu thức sau không phụ thuộc vào biến :
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)
c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(8-1\right)\)
d ) \(\left(x+y+z\right)^2+\left(x-y\right)^2-\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
CÁC BẠN GIÚP MÌNH VỚI
các anh chị cộng tác viên ơi giúp em với
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^3+1\right)-\left(x^3-1\right)\)
\(=x^3+1-x^3+1\)
\(=2\)
Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.
b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)
\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)
\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)
\(=27\)
Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.
c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
\(=-65\)
Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.
d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
\(=0\)
Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.
37. Phân tích đa thưc 2x^3y - 2xy^3 - 4xy^2 - 2xy thành nhân tử ta đc:
A. 2xy (x-y-1) (x+y-1)
B. 16x - 54y^3 = 2(2x-3y) (4x^2 + 6xy + 9y^2)
C. 16x^3 - 54y = 2(2x - 3y) (2x + 3y) ^2
D. 16x^4 (x-y) - x + y = (4x^2 -1) (4x^2 + 1) (x-y)
\(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy.\left(x^2-y^2-2y-1\right)\)
\(=2xy.[x^2-\left(y^2+2y+1\right)]\)
\(=2xy.[x^2-\left(y+1\right)^2]\)
\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)
Vậy chọn đáp án A