Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yeutoanhoc
23 tháng 12 2020 lúc 14:20

`x,y,z in Z` và `6^x=1+2^y+3^z`

hiền nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 20:13

loading...  loading...  

Hatake Kakashi
Xem chi tiết
tth_new
15 tháng 4 2019 lúc 14:25

đỗ thị cẩm ly dạng này thì lớp 9 mới chính thức học,nhưng lớp 7 có thể đưa về những dạng quen thuộc để giải ạ.Vd: tìm x để biểu thức y nguyên

                                                  Lời giải

Theo đề bài,với x = 1 suy ra \(0y=3\) (vô lí)

Xét \(x\ne1\),chia hai vế của đẳng thức cho x - 1,được:

\(y=\frac{x^2+2}{x-1}=\frac{x^2-1^2}{x-1}+\frac{3}{x-1}\)

\(=\left(x+1\right)+\frac{3}{x-1}\)(dùng đẳng thức:\(a^2-b^2=\left(a-b\right)\left(a+b\right)\) ,tự chứng minh,sẽ ra được kết quả này)

Do x + 1 nguyên (với mọi x thuộc Z),nên để y thuộc Z(tức là y nguyên ấy)

Thì \(\frac{3}{x-1}\inℤ\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Suy ra \(x\in\left\{-2;0;2;4\right\}\).Thay từng giá trị của x vào \(y=\frac{x^2+2}{x-1}\) sẽ tìm được y (lưu ý đk y nguyên)

tth_new
15 tháng 4 2019 lúc 16:01

Đầu tiên,xét bài toán phụ: CMR: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
Thật vậy,ta có: \(a^2-b^2=\left(a^2+ab\right)-\left(ab+b^2\right)\)

\(=a\left(a+b\right)-b\left(a+b\right)=\left(a-b\right)\left(a+b\right)\)

Trở lại bài toán,ta có \(y\left(x-1\right)-x^2=2\) (chuyển vế)

Thêm 12 vào mỗi vế và áp dụng quy tắc dấu ngoặc:

\(y\left(x-1\right)-\left(x^2-1^2\right)=3\)

\(\Leftrightarrow y\left(x-1\right)-\left(x-1\right)\left(x+1\right)=3\)

\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=3\) 

Dễ dàng nhận xét rằng \(x-1;y-x-1\inƯ\left(3\right)\)

Xét bốn trường hợp:

TH1: \(\hept{\begin{cases}x-1=-3\\y-x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-2\end{cases}}\)

TH2: \(\hept{\begin{cases}x-1=-1\\y-x-1=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-2\end{cases}}\)

TH3: \(\hept{\begin{cases}x-1=1\\y-x-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)

TH4; \(\hept{\begin{cases}x-1=3\\y-x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\)

Vậy \(\left(x;y\right)=\left\{\left(-2;-2\right),\left(0;-2\right),\left(2;6\right),\left(4;6\right)\right\}\)

Trần Thanh Phương
15 tháng 4 2019 lúc 21:42

tth  a có cách giải pt nghiệm nguyên này. Cũng khá hay

\(x^2+2=y\left(x-1\right)\)

\(\Leftrightarrow y=\frac{x^2+2}{x-1}\)

Vì y nguyên nên \(\frac{x^2+2}{x-1}\)nguyên

Khi đó : \(\left(x^2+2\right)⋮\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-x+x-1+3\right)⋮\left(x-1\right)\)

\(\Leftrightarrow\left[x\left(x-1\right)+\left(x-1\right)+3\right]⋮\left(x-1\right)\)

\(\Leftrightarrow\left[\left(x-1\right)\left(x+1\right)+3\right]⋮\left(x-1\right)\)

Vì \(\left(x-1\right)\left(x+1\right)⋮\left(x-1\right)\)

\(\Rightarrow3⋮\left(x-1\right)\)

\(\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{2;0;4;-2\right\}\)

Xét bảng :

x204-2
y6-26-2

Vậy (x;y)={(2;6),(0;-2),(4;6),(-2;-2)}

Edogawa Conan
Xem chi tiết
Trần Mạnh
25 tháng 2 2021 lúc 21:42

https://hoc24.vn/cau-hoi/tim-xy-thuoc-z-thoa-man-x2-2xy-7x-y-2y2-10-0.216670050813

saadaa
Xem chi tiết
Vũ Khắc Mạnh
Xem chi tiết
Vũ Khắc Mạnh
8 tháng 5 2017 lúc 20:21

ai trả lời đc mình k cho

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 11 2021 lúc 17:30

\(\Leftrightarrow\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-4y+4\right)=4\)

\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=4=2^2+0^2=0^2+2^2\)

\(\Rightarrow x;y\)

Nguyễn Mai Phương
Xem chi tiết
Đàm Tùng Vận
Xem chi tiết
Akai Haruma
8 tháng 12 2021 lúc 0:09

1.

PT $\Leftrightarrow (x^2+2xy+y^2)-(y^2+6y+9)=0$

$\Leftrightarrow (x+y)^2-(y+3)^2=0$

$\Leftrightarrow (x+y-y-3)(x+y+y+3)=0$

$\Leftrightarrow (x-3)(x+2y+3)=0$

$\Rightarrow x-3=0$ hoặc $x+2y+3=0$

Nếu $x-3=0\Leftrightarrow x=3$. Vậy $(x,y)=(3,a)$ với $a$ nguyên bất kỳ.

Nếu $x+2y+3=0\Leftrightarrow x=-2y-3$ lẻ. Vậy $(x,y)=(-2a-3,a)$ với $a$ nguyên bất kỳ.

Akai Haruma
8 tháng 12 2021 lúc 0:12

2. 

PT $\Leftrightarrow x^2=(y^2+2y+1)+12$

$\Leftrightarrow x^2=(y+1)^2+12\Leftrightarrow x^2-(y+1)^2=12$

$\Leftrightarrow (x-y-1)(x+y+1)=12$
Vì $x-y-1, x+y+1$ là số nguyên và cùng tính chẵn lẻ nên xảy ra các TH sau:

TH1: $x-y-1=2; x+y+1=6\Rightarrow x=4; y=1$

TH2: $x-y-1=6; x+y+1=2\Rightarrow x=4; y=-3$

TH3: $x-y-1=-2; x+y+1=-6\Rightarrow x=-4; y=-3$

TH4: $x-y-1=-6; x+y+1=-2\Rightarrow x=-4; y=1$