\(\int_{-1}^0\) \(\dfrac{x^2-4x+4}{x^2-1}dx\)
\(\int_{-1}^0\)\(\dfrac{4x+4}{\left(x^2-4x+3\right)^2}dx\)
\(\int_{0}^{1}\dfrac{2x+1}{x^2+2x+2}dx \)
\(\int\dfrac{2x+1}{\left(x+1\right)^2+1}dx\)
\(x+1=\tan t\Rightarrow dx=\left(\tan^2t+1\right)dt\)
\(\Rightarrow\int\dfrac{2x+1}{\left(x+1\right)^2+1}dx=\int\dfrac{2\left(\tan t-1\right)+1}{\tan^2t+1}.\left(\tan^2t+1\right)dt\)
\(=\int(2\tan t-1)dt=\int2\tan t.dt-\int dt=2\int\tan t.dt-t\)
\(\int\tan t.dt=\int\dfrac{\sin t}{\cos t}.dt\)
\(u=\cos t\Rightarrow du=-\sin t.dt\Rightarrow\int\dfrac{\sin t}{\cos t}=-\int\dfrac{\sin t}{u}.\dfrac{du}{\sin t}=-ln \left|\cos t\right|+C\)
\(\Rightarrow\int\dfrac{2x+1}{x^2+2x+2}dx=-2ln\left|\cos t\right|-t=-2ln\left|\cos\left[arc\tan\left(x+1\right)\right]\right|-arc\tan\left(x+1\right)\)
P/s: Bạn tự thay cận vô nhé !
\(=\int\limits^1_0\dfrac{2x+2}{x^2+2x+2}dx-\int\limits^1_0\dfrac{1}{\left(x+1\right)^2+1}dx\)
\(=ln\left(x^2+2x+2\right)|^1_0-arctan\left(x+1\right)|^1_0=...\)
Tính nguyên hàm
a) I=\(\int\)\((\dfrac{1}{x}-2x)dx\)
b) I=\(\int\)cos2xdx
c) I=\(\int\)\(\dfrac{1}{x^2-4x+4}dx\)
Tính tích phân : d) I=\(\int_{1}^{4}\dfrac{1}{2 √x}dx\)
c) I=\(\int_{0}^{1}(2x+1)e^xdx\)
\(\int\left(\frac{1}{x}-2x\right)dx=ln\left|x\right|-x^2+C\)
\(\int cos2xdx=\frac{1}{2}sin2x+C\)
\(\int\frac{1}{x^2-4x+4}dx=\int\frac{d\left(x-2\right)}{\left(x-2\right)^2}=-\frac{1}{\left(x-2\right)}+C=\frac{1}{2-x}+C\)
\(\int\limits^4_1\frac{1}{2\sqrt{x}}dx=\sqrt{x}|^4_1=\sqrt{4}-\sqrt{1}=1\)
\(I=\int\limits^1_0\left(2x+1\right)e^xdx\)
Đặt \(\left\{{}\begin{matrix}u=2x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=\left(2x+1\right)e^x|^1_0-\int\limits^1_02e^xdx=3e-1-2e^x|^1_0=e+3\)
\(\int_{-1}^0\)\(\dfrac{3x^2+3x+3}{x^3-3x+2}dx\)
\(S=\int_{-4}^4\:\:\:5.\sqrt{1-\dfrac{x^2}{64}}dx\)
Lời giải:
Đặt $\frac{x}{8}=\sin t$
Khi đó:
\(S=5\int ^{\frac{\pi}{6}}_{\frac{-\pi}{6}}\sqrt{1-\sin ^2t}d(8\sin t)=40\int ^{\frac{\pi}{6}}_{\frac{-\pi}{6}}\cos^2 tdt\)
\(=20\int ^{\frac{\pi}{6}}_{\frac{-\pi}{6}}(\cos 2t+1)dt\)
\(=(10\sin 2t+20t)|^{\frac{\pi}{6}}_{\frac{-\pi}{6}}=10\sqrt{3}+\frac{20}{3}\pi\)
\(S=5.\int\sqrt{\left(1-\dfrac{x}{8}\right)\left(1+\dfrac{x}{8}\right)}dx\)
\(t=1-\dfrac{x}{8}\Rightarrow x=8\left(1-t\right)\Rightarrow dx=-8dt\)
\(\Rightarrow S=-5.8\int\sqrt{t\left(1+\dfrac{8\left(1-t\right)}{8}\right)}dt=-40\int\sqrt{t\left(2-t\right)}dt=-40\int\sqrt{1-\left(t-1\right)^2}dt\)
\(t-1=\sin u\left(-\dfrac{\pi}{2}\le u\le\dfrac{\pi}{2}\right)\Rightarrow dt=\cos udu\)
\(\Rightarrow S=-40\int\cos^2u.du=-20\int[1+\cos\left(2u\right)]du\)
\(=-20\int du-20\int\cos\left(2u\right)du=-20u+\dfrac{20}{2}\sin2u=-20arc\sin\left(t-1\right)+10\sin2\left[arc\sin\left(t-1\right)\right]\)
\(=-20arc\sin\left(\dfrac{x}{8}\right)+10\sin2\left[arc\sin\left(\dfrac{x}{8}\right)\right]\)
P/s: Bạn tự thay cận vô ạ
Câu 1: Biết \(\int_{1}^{2}f(x) dx=4;\int_{2}^{6}f(x) dx=12,tính \int_{1}^{6}f(x) dx=?\)
Câu 2:Biết
\(\int_{3}^{9}f(x) dx=12.Tính \int_{1}^{3}f(x) dx\)
Câu 1: điều kiện là hàm f(x) liên tục và khả vi trên [1;6]
\(\int\limits^6_1f\left(x\right)dx=\int\limits^2_1f\left(x\right)dx+\int\limits^6_2f\left(x\right)dx=4+12=16\)
Câu 2:
Không tính được tích phân kia, tích phân \(\int\limits^3_1f\left(3x\right)dx\) thì còn tính được
a) I= \(\int_{-1}^0\) \(x^3\sqrt{x+1}dx\)
b) \(I=2\int^1_0\)\(\dfrac{x^2dx}{\left(x+1\right)\sqrt{x+1}}\)
tính các tích phân
1.\(\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{2}}e^{\sin x}\cos xdx\)
2.\(\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{2}}e^{2\cos x+1}\sin xdx\)
3,\(\int_1^e\dfrac{e^{2lnx+1}}{x}dx\)
4.\(\int_0^1xe^{x^2+2}dx\)
Ở tất cả các dạng bài như thế này em chỉ cần ghi nhớ công thức:
\(d(u(x))=u'(x)dx\)
Câu 1)
Ta có \(I_1=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{\sin x}\cos xdx=\int _{\frac{\pi}{4}}^{\frac{\pi}{2}}e^{\sin x}d(\sin x)\)
Đặt \(\sin x=t\Rightarrow I_1=\int ^{1}_{\frac{\sqrt{2}}{2}}e^tdt=\left.\begin{matrix} 1\\ \frac{\sqrt{2}}{2}\end{matrix}\right|e^t=e-e^{\frac{\sqrt{2}}{2}}\)
Câu 2)
\(I_2=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}e^{2\cos x+1}\sin xdx=\frac{-1}{2}\int ^\frac{\pi}{2}_{\frac{\pi}{4}}e^{2\cos x+1}d(2\cos x+1)\)
Đặt \(2\cos x+1=t\Rightarrow I_2=\frac{-1}{2}\int ^{1}_{1+\sqrt{2}}e^tdt\)
\(=\frac{-1}{2}.\left.\begin{matrix} 1\\ 1+\sqrt{2}\end{matrix}\right|e^t=\frac{-1}{2}(e-e^{1+\sqrt{2}})\)
Câu 3:
Có \(I_3=\int ^{e}_{1}\frac{e^{2\ln x+1}}{x}dx=\int ^{e}_{1}e^{2\ln x+1}d(\ln x)\)
\(=\frac{1}{2}\int ^{e}_{1}e^{2\ln x+1}d(2\ln x+1)\)
Đặt \(2\ln x+1=t\Rightarrow I_3=\frac{1}{2}\int ^{3}_{1}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 1\end{matrix}\right|e^t=\frac{1}{2}(e^3-e)\)
Câu 4:
\(I_4=\int ^{1}_{0}xe^{x^2+2}dx=\frac{1}{2}\int ^{1}_{0}e^{x^2+2}d(x^2+2)\)
Đặt \(x^2+2=t\Rightarrow I_4=\frac{1}{2}\int ^{3}_{2}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 2\end{matrix}\right|e^t=\frac{1}{2}(e^3-e^2)\)
1/ I=\(\int_{-2}^2\left|x^2-1\right|dx\)
2/ I= \(\int_1^e\sqrt{x}.lnxdx\)
3/ I= \(\int_0^{\dfrac{\pi}{2}}\left(e^{sinx}+cosx\right)cosxdx\)
4/ I= \(\int_0^{\dfrac{pi}{2}}\dfrac{sin2x}{\sqrt{cos^2x+4sin^2x}}dx\)
5/ I= \(\int_0^{\dfrac{\pi}{4}}\sqrt{2}cos\sqrt{x}dx\)
6/ I= \(\int_1^{\sqrt{e}}\dfrac{1}{x\sqrt{1-ln^2x}}dx\)
7/ I= \(\int_{-\dfrac{\pi}{4}}^{\dfrac{\pi}{4}}\dfrac{sin^6x+cos^6x}{6^x+1}dx\)
Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ
Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)
x | -2 | -1 | 1 | 2 |
\(x^2-1\) | 0 | 0 |
\(\left(-2;-1\right):+\)
\(\left(-1;1\right):-\)
\(\left(1;2\right):+\)
\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)
\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)
\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)
Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính
2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)
\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)
\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)
3/ \(I=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx+\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
Xét \(A=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx\)
\(t=\sin x\Rightarrow dt=\cos x.dx\Rightarrow A=\int\limits^{\dfrac{\pi}{2}}_0e^t.dt=e^{\sin x}|^{\dfrac{\pi}{2}}_0\)
Xét \(B=\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
\(=\int\limits^{\dfrac{\pi}{2}}_0\dfrac{1+\cos2x}{2}.dx=\dfrac{1}{2}.\int\limits^{\dfrac{\pi}{2}}_0dx+\dfrac{1}{2}\int\limits^{\dfrac{\pi}{2}}_0\cos2x.dx\)
\(=\dfrac{1}{2}x|^{\dfrac{\pi}{2}}_0+\dfrac{1}{2}.\dfrac{1}{2}\sin2x|^{\dfrac{\pi}{2}}_0\)
I=A+B=...