Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảob Đỗ
Xem chi tiết
Azilute G
Xem chi tiết
Hoàng Tử Hà
23 tháng 2 2021 lúc 17:02

\(\int\dfrac{2x+1}{\left(x+1\right)^2+1}dx\)

\(x+1=\tan t\Rightarrow dx=\left(\tan^2t+1\right)dt\)

\(\Rightarrow\int\dfrac{2x+1}{\left(x+1\right)^2+1}dx=\int\dfrac{2\left(\tan t-1\right)+1}{\tan^2t+1}.\left(\tan^2t+1\right)dt\)

\(=\int(2\tan t-1)dt=\int2\tan t.dt-\int dt=2\int\tan t.dt-t\)

\(\int\tan t.dt=\int\dfrac{\sin t}{\cos t}.dt\)

\(u=\cos t\Rightarrow du=-\sin t.dt\Rightarrow\int\dfrac{\sin t}{\cos t}=-\int\dfrac{\sin t}{u}.\dfrac{du}{\sin t}=-ln \left|\cos t\right|+C\)

\(\Rightarrow\int\dfrac{2x+1}{x^2+2x+2}dx=-2ln\left|\cos t\right|-t=-2ln\left|\cos\left[arc\tan\left(x+1\right)\right]\right|-arc\tan\left(x+1\right)\)

P/s: Bạn tự thay cận vô nhé !

Nguyễn Việt Lâm
23 tháng 2 2021 lúc 17:02

\(=\int\limits^1_0\dfrac{2x+2}{x^2+2x+2}dx-\int\limits^1_0\dfrac{1}{\left(x+1\right)^2+1}dx\)

\(=ln\left(x^2+2x+2\right)|^1_0-arctan\left(x+1\right)|^1_0=...\)

Phan trà my
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2020 lúc 8:35

\(\int\left(\frac{1}{x}-2x\right)dx=ln\left|x\right|-x^2+C\)

\(\int cos2xdx=\frac{1}{2}sin2x+C\)

\(\int\frac{1}{x^2-4x+4}dx=\int\frac{d\left(x-2\right)}{\left(x-2\right)^2}=-\frac{1}{\left(x-2\right)}+C=\frac{1}{2-x}+C\)

\(\int\limits^4_1\frac{1}{2\sqrt{x}}dx=\sqrt{x}|^4_1=\sqrt{4}-\sqrt{1}=1\)

\(I=\int\limits^1_0\left(2x+1\right)e^xdx\)

Đặt \(\left\{{}\begin{matrix}u=2x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=\left(2x+1\right)e^x|^1_0-\int\limits^1_02e^xdx=3e-1-2e^x|^1_0=e+3\)

Thảob Đỗ
Xem chi tiết
Quân Trương
Xem chi tiết
Akai Haruma
5 tháng 3 2021 lúc 21:39

Lời giải:

Đặt $\frac{x}{8}=\sin t$ 

Khi đó:

\(S=5\int ^{\frac{\pi}{6}}_{\frac{-\pi}{6}}\sqrt{1-\sin ^2t}d(8\sin t)=40\int ^{\frac{\pi}{6}}_{\frac{-\pi}{6}}\cos^2 tdt\)

\(=20\int ^{\frac{\pi}{6}}_{\frac{-\pi}{6}}(\cos 2t+1)dt\)

\(=(10\sin 2t+20t)|^{\frac{\pi}{6}}_{\frac{-\pi}{6}}=10\sqrt{3}+\frac{20}{3}\pi\)

 

 

Hoàng Tử Hà
5 tháng 3 2021 lúc 21:59

\(S=5.\int\sqrt{\left(1-\dfrac{x}{8}\right)\left(1+\dfrac{x}{8}\right)}dx\)

\(t=1-\dfrac{x}{8}\Rightarrow x=8\left(1-t\right)\Rightarrow dx=-8dt\)

\(\Rightarrow S=-5.8\int\sqrt{t\left(1+\dfrac{8\left(1-t\right)}{8}\right)}dt=-40\int\sqrt{t\left(2-t\right)}dt=-40\int\sqrt{1-\left(t-1\right)^2}dt\)

\(t-1=\sin u\left(-\dfrac{\pi}{2}\le u\le\dfrac{\pi}{2}\right)\Rightarrow dt=\cos udu\)

\(\Rightarrow S=-40\int\cos^2u.du=-20\int[1+\cos\left(2u\right)]du\)

\(=-20\int du-20\int\cos\left(2u\right)du=-20u+\dfrac{20}{2}\sin2u=-20arc\sin\left(t-1\right)+10\sin2\left[arc\sin\left(t-1\right)\right]\)

\(=-20arc\sin\left(\dfrac{x}{8}\right)+10\sin2\left[arc\sin\left(\dfrac{x}{8}\right)\right]\)

P/s: Bạn tự thay cận vô ạ

Phan trà my
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2020 lúc 12:30

Câu 1: điều kiện là hàm f(x) liên tục và khả vi trên [1;6]

\(\int\limits^6_1f\left(x\right)dx=\int\limits^2_1f\left(x\right)dx+\int\limits^6_2f\left(x\right)dx=4+12=16\)

Câu 2:

Không tính được tích phân kia, tích phân \(\int\limits^3_1f\left(3x\right)dx\) thì còn tính được

Thảob Đỗ
Xem chi tiết
Nguyễn Trần Khánh Linh
Xem chi tiết
Akai Haruma
11 tháng 1 2018 lúc 23:03

Ở tất cả các dạng bài như thế này em chỉ cần ghi nhớ công thức:

\(d(u(x))=u'(x)dx\)

Câu 1)

Ta có \(I_1=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{\sin x}\cos xdx=\int _{\frac{\pi}{4}}^{\frac{\pi}{2}}e^{\sin x}d(\sin x)\)

Đặt \(\sin x=t\Rightarrow I_1=\int ^{1}_{\frac{\sqrt{2}}{2}}e^tdt=\left.\begin{matrix} 1\\ \frac{\sqrt{2}}{2}\end{matrix}\right|e^t=e-e^{\frac{\sqrt{2}}{2}}\)

Câu 2)

\(I_2=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}e^{2\cos x+1}\sin xdx=\frac{-1}{2}\int ^\frac{\pi}{2}_{\frac{\pi}{4}}e^{2\cos x+1}d(2\cos x+1)\)

Đặt \(2\cos x+1=t\Rightarrow I_2=\frac{-1}{2}\int ^{1}_{1+\sqrt{2}}e^tdt\)

\(=\frac{-1}{2}.\left.\begin{matrix} 1\\ 1+\sqrt{2}\end{matrix}\right|e^t=\frac{-1}{2}(e-e^{1+\sqrt{2}})\)

Akai Haruma
11 tháng 1 2018 lúc 23:08

Câu 3:

Có \(I_3=\int ^{e}_{1}\frac{e^{2\ln x+1}}{x}dx=\int ^{e}_{1}e^{2\ln x+1}d(\ln x)\)

\(=\frac{1}{2}\int ^{e}_{1}e^{2\ln x+1}d(2\ln x+1)\)

Đặt \(2\ln x+1=t\Rightarrow I_3=\frac{1}{2}\int ^{3}_{1}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 1\end{matrix}\right|e^t=\frac{1}{2}(e^3-e)\)

Câu 4:

\(I_4=\int ^{1}_{0}xe^{x^2+2}dx=\frac{1}{2}\int ^{1}_{0}e^{x^2+2}d(x^2+2)\)

Đặt \(x^2+2=t\Rightarrow I_4=\frac{1}{2}\int ^{3}_{2}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 2\end{matrix}\right|e^t=\frac{1}{2}(e^3-e^2)\)

Ngọc Ánh Nguyễn Thị
Xem chi tiết
Hoàng Tử Hà
17 tháng 1 2021 lúc 10:38

Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ 

Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)

x  -2  -1  1  2  
\(x^2-1\) 00 

\(\left(-2;-1\right):+\)

\(\left(-1;1\right):-\)

\(\left(1;2\right):+\)

\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)

\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)

\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)

Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính 

Hoàng Tử Hà
17 tháng 1 2021 lúc 10:56

2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)

\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)

\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)

Hoàng Tử Hà
17 tháng 1 2021 lúc 11:18

3/ \(I=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx+\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)

Xét \(A=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx\)

\(t=\sin x\Rightarrow dt=\cos x.dx\Rightarrow A=\int\limits^{\dfrac{\pi}{2}}_0e^t.dt=e^{\sin x}|^{\dfrac{\pi}{2}}_0\)

Xét \(B=\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)

\(=\int\limits^{\dfrac{\pi}{2}}_0\dfrac{1+\cos2x}{2}.dx=\dfrac{1}{2}.\int\limits^{\dfrac{\pi}{2}}_0dx+\dfrac{1}{2}\int\limits^{\dfrac{\pi}{2}}_0\cos2x.dx\)

\(=\dfrac{1}{2}x|^{\dfrac{\pi}{2}}_0+\dfrac{1}{2}.\dfrac{1}{2}\sin2x|^{\dfrac{\pi}{2}}_0\)

I=A+B=...