PTTNT A=x[x^2(x^2-7)-36]
1) PTTNT
a) x^2 - 4x^2y + 4xy
b)x^2 + 3x + x - 3y
2) Tim GTLN
-2x^2 + 3x - 5
3) tim x,y thuoc z
3xy + 6x - y = 7
Bài 2:
\(A=-2x^2+3x-5\)
\(=-2\left(x^2+\frac{3x}{2}-\frac{5}{2}\right)\)
\(=-2\left(x^2-\frac{3x}{2}+\frac{9}{16}\right)-\frac{31}{8}\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\le-\frac{31}{8}\)
Dấu = khi \(-2\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(Max_A=-\frac{31}{8}\Leftrightarrow x=\frac{3}{4}\)
Bài 1:
a)x2-4x2y+4xy
=x(x-4xy+y)
b)đề sai
Bài 3:
3yx + 6x - y = 7
<=> x(3y+6) - (3y+6) = 27
<=> (3y+6)(x+1) = 27
Ta có bảng sau:
x+1 | 1 | -1 | 3 | -3 | 9 | -9 | 27 | -27 | |
3y+6 | 27 | -27 | 9 | -9 | 3 | -3 | 1 | -1 | |
x | 0 | -2 | 2 | -4 | 8 | -10 | 26 | -28 | |
y | 7 | -11 | 1 | -5 | -1 | -3 | \(-\frac{5}{3}\) | \(-\frac{7}{3}\) |
Vậy...
PTTNT
a (x+a)(x+2a)(x+3a)(x+4a)+a^4
b (x^2+y^2+z^2)(x+y+z)^2+(xy+yz+zx)^2
a) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
\(=\left[\left(x+a\right)\left(x+4a\right)\right]\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4\)
\(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)
\(=\left(x^2+5ax+5a^2\right)^2-\left(a^2\right)^2+a^4\)
\(=\left(x^2+5ax+5a^2\right)^2\)
b) \(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2\right)\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2\right)^2+2\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)
PTTNT:
x(x+1)(x+2)(x+3) =
Lớp 1 thì làm gì mà có cái này hả dfdfdfdfdfd
1 pttnt
x^2+5y^2+2x-4xy-10y+10=0
2 tính gtbt
P= x^9-8x^8+8x^7-...-8x^2+8x-15
Pttnt:
a)(x+z)/((x-y)(y-z)) –(x+y)/((x-z)(y-z)) – (y+z)/((x-y(x-z))
b)(x^2+2x-3/(x^2+3x-10) . (x^2-9x+14)/(x^2+7x+12)
câu b: (x^2+2x-3)/(x^2+3x-10).(x^2-9x+14)/(x^2+7x+12)
= (x^2+3x-x-3)/(x^2-2x+5x-10).(x^2-7x-2x+14)/(x^2+4x+3x+12)
=(x+3)(x-1)/(x-2)(x-5).(x-7)(x-2)/(x+4)(x+3)
=(x+3)(x-1)(x-7)(x-2)/(x-2)(x-5)(x+4)(x+3)
=(x-1)(x-7)/(x-5)(x+4)
pttnt a 25x^2-y^2+4y-4
b a^2+b^2-x^2-y^2+2ab-2xy
c 5x^2(x-1)+10xy(x-1)-5y^2(1-x)
d x^5-x^4y-xy^4+y^5
a) 25x2 - y2 + 4y - 4
= (5x)2 - (y - 2)2
= (5x + y - 2)(5x - y + 2)
b) a2 + b2 - x2 - y2 + 2ab - 2xy
= (a2 + 2ab + b2) - (x2 + 2xy + y2)
= (a + b)2 - (x + y)2
= (a + b + x + y)(a + b - x - y)
c) 5x2(x - 1) + 10xy(x - 1) - 5y2(1 - x)
= 5x2(x - 1) + 10xy(x - 1) + 5y2(x - 1)
= (x - 1)(5x2 + 10xy + 5y2)
= 5(x - 1)(x2 + 2xy + y2)
= 5(x -1)(x + y)2
d) x5 - x4y - xy4 + y5
= x4(x - y) - y4(x - y)
= (x - y)(x4 - y4)
= (x - y)(x2 - y2)(x2 + y2) = (x - y)2(x + y)(x2 + y2)
Chu choa, đi hỏi khắp nơi luôn kìa trời!
Pttnt: x5+x4+x3+x2+x+1
x5+x4+x3+x2+x+1
=x3.(x2+x+1)+(x2+x+1)
=(x2+x+1)(x3+1)
=(x2+x+1)(x+1)(x2-x+1)
1)Phân tính đa thức thành nhân tử băng cách đặt nhân tử chung:
a)3x(x-a)+4a(a-x)
b)x^2(y^2+z)+y^3+yz
c)3x^2(x+1)-5x(x+1)^2+4(x+1)
2)PTTNT bằng cách dùng các hằng đẳng thức:
a)-x^2+5x+2xy-5y-y^2
b)x^2-y^2+2x+1
c)x^2+2xz-y^2+2ty+z^2-t^2
3)PTTNT bằng cách tách 1 hạng tử thành tổng:
a)x^3-4x^2+4x-1
b)x^3-3x^2+4x-2
c)x^3-4x^2+5x-2
4)PTTNT bằng cách tách hạng tử:
a)-7x^2+5xy+12y^2
b)x^2-11xy+28y^2
c)x^2-3xy-40y^2
5)
a)x^4+4x^2-5
b)x^3+4x^2-31x-70
c)2x^2-y^2+xy
d)y^2-y-12
6)
a)x^2+3xy+2y^2
b)x^4-3x^2+1
c)6^3-17x^2+14x-3
Bài 1:
a: \(3x\left(x-a\right)+4a\left(a-x\right)\)
=3x(x-a)-4a(x-a)
=(x-a)(3x-4a)
b: \(x^2\left(y^2+z\right)+y^3+yz\)
\(=x^2\left(y^2+z\right)+y\left(y^2+z\right)\)
\(=\left(x^2+y\right)\left(y^2+z\right)\)
c: \(3x^2\left(x+1\right)-5x\left(x+1\right)^2+4\left(x+1\right)\)
\(=\left(x+1\right)\left[3x^2-5x\left(x+1\right)+4\right]\)
\(=\left(x+1\right)\left(3x^2-5x^2-5x+4\right)\)
\(=\left(x+1\right)\left(-2x^2-5x+4\right)\)
pttnt
a x^2 -7xy-18y^2
b 4x^2+8x-5
c 4x^4-21x^2y^2+y^4
a) x2 - 7xy - 18y2
= x2 + 2xy - 9xy - 18y2
= x(x + 2y) - 9y(x + 2y)
= (x - 9y)(x + 2y)
b) 4x2 + 8x - 5
= 4x2 - 2x + 10x - 5
= 2x(2x - 1) + 5(2x - 1)
= (2x + 5)(2x - 1)
c) 4x4 - 21x2y2 + y4
= (4x4 + 4x2y2 + y4) -25x2y2
= (2x2 + y2) - (5xy)2
= (2x2 + 5xy + y2)(2x2 - 5xy + y2)
= \(2\left(x^2+\frac{5}{2}xy+\frac{y^2}{2}\right)2\left(x^2-\frac{5}{2}xy+\frac{y^2}{2}\right)\)
= \(4\left[\left(x+\frac{5}{4}y\right)^2-\frac{25}{16}y^2+\frac{y^2}{2}\right]\left[\left(x-\frac{5}{4}\right)y^2-\frac{25}{16}y^2+\frac{y^2}{2}\right]\)
\(=4\left(x+\frac{5}{4}y-\frac{\sqrt{17}}{4}y\right)\left(x+\frac{5}{4}y+\frac{\sqrt{17}}{4}y\right)\left(x-\frac{5}{4}y-\frac{\sqrt{17}y}{4}\right)\left(x-\frac{5}{4}y+\frac{\sqrt{17y}}{4}\right)\)
Trả lời:
a, x2 - 7xy - 18y2
= x2 - 9xy + 2xy - 18y2
= ( x2 - 9xy ) + ( 2xy - 18y2 )
= x ( x - 9y ) + 2y ( x - 9y )
= ( x + 2y ) ( x - 9y )
b, 4x2 + 8x - 5
= 4x2 + 10x - 2x - 5
= ( 4x2 + 10x ) - ( 2x + 5 )
= 2x ( 2x + 5 ) - ( 2x + 5 )
= ( 2x - 1 ) ( 2x + 5 )