Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ak123
Xem chi tiết
ak123
Xem chi tiết
Đẹp trai
Xem chi tiết
HT.Phong (9A5)
12 tháng 9 2023 lúc 10:28

Do \(n^2+2n+6\) là số chính phương nên đặt: \(n^2+2n+6=a^2\) 

\(\Rightarrow n^2+2n+1+5=a^2\) 

\(\Rightarrow\left(n^2+2n+1\right)+5=a^2\)

\(\Rightarrow\left(n+1\right)^2+5=a^2\)

\(\Rightarrow a^2-\left(n+1\right)^2=5\)

\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\)

\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\cdot1\)

Ta có: \(a+n+1>a-n-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+n+1=5\\a-n-1=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+n=4\\a-n=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(4+2\right):2\\n=\left(4-2\right):2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\n=1\end{matrix}\right.\)

Vậy: \(n^2+2n+6\) là số chính phương khi \(n=1\)

Đẹp trai
12 tháng 9 2023 lúc 10:08

Giúp mình vs

Nguyễn Đức Trí
12 tháng 9 2023 lúc 10:26

\(n^2+2n+6\) là số chính phương

Đặt \(n^2+2n+6=k^2\left(k\in N\right)\)

\(\Leftrightarrow4n^2+8n+24=4k^2\)

\(\Leftrightarrow4n^2+8n+1+23=\left(2k\right)^2\)

\(\Leftrightarrow\left(2n+1\right)^2+23=\left(2k\right)^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2n+1\right)^2=23\)

\(\Leftrightarrow\left(2k+2n+1\right)\left(2k-2n-1\right)=23\)

mà \(2k+2n+1>2k-2n-1,\forall a;k\in N\)

\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n+1=23\\2k-2n-1=1\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n=22\\2k-2n=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k+n=11\\k-n=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k=6\\n=5\end{matrix}\right.\)

Vậy \(n=5\) thỏa mãn đề bài

Le Minh to
Xem chi tiết
o0o I am a studious pers...
4 tháng 10 2016 lúc 18:44

\(n^2-2n-10\)

\(=n^2-2n+1-11\)

\(=\left(n-1\right)^2-11\)

Le Minh to
4 tháng 10 2016 lúc 18:45

tim n co ma

Trương Minh Trọng
30 tháng 6 2017 lúc 9:43

\(n^2-2n-10=k^2\left(k\in N\right)\)\(\Leftrightarrow\left(n-1\right)^2-k^2=11\Leftrightarrow\left(n-1-k\right)\left(n-1+k\right)=11\)\(=1\cdot11=11\cdot1=-1\cdot-11=-11\cdot-1\)

Giải 4 trường hợp ta được (n;k) = (7;5), (7;-5), (-5;-5), (-5;5) mà n,k thuộc số tự nhiên suy ra n = 7

Vậy với n = 7 và thì biểu thức là số chính phương.

Sakura Trần
Xem chi tiết
.
Xem chi tiết

Ta có :

2n+2017 là số chính phương lẻ => 2n+2017 chia 8 dư 1

=> 2n chia hết cho 8 => n chia hết cho 4

=> n+2019 chia ch 4 dư 3

mà số chính phương chia cho 4 dư 0,1

=> không tồn tại n

Khách vãng lai đã xóa
IS
28 tháng 2 2020 lúc 13:02

2n + 2017 là số chính phương lẻ

=> 2n + 2017 chia 8 dư 1 ( do scp lẻ chia 8 dư 1)

=> 2n chia hết cho 8 => n chia hết cho 4

=> n + 2019 chia 4 dư 3

Mà scp chia 4 dư 0 hoặc 1

=> n + 2019 ko là scp

Vậy ko tồn tại STN n thoả mãn

Khách vãng lai đã xóa
Trí Tiên亗
28 tháng 2 2020 lúc 13:04

Đặt \(\hept{\begin{cases}2n+2017=a^2\\n+2019=b^2\end{cases}\left(a,b\inℕ^∗\right)}\)

Dễ thấy : \(a^2\) là số chính phương lẻ, mà số chính phương lẻ chia 8 luôn dư 1. ( Điều này sẽ được chứng minh ở cuối bài làm ).

\(\Rightarrow2n+2017\equiv1\left(mod8\right)\)

\(\Rightarrow2n⋮8\) \(\Rightarrow n⋮4\)

\(\Rightarrow n+2019:4\) dư 3 hay \(\Rightarrow b^2:4\) dư 3

Lại có : một số chính phương chia cho 4 chỉ có thể có số dư là 0 hoặc 1. ( Điều này sẽ được chứng minh ở cuối bài làm )

\(\Rightarrow n+2019\) không phải là số chính phương.

Do đó không tồn tại số tự nhiên n thỏa mãn đề.

*) Chứng minh bài toán phụ :

+) Số chính phương lẻ chia 8 dư 1 :

Ta có : \(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\) chia 8 dư 1. 

+)  Một số chính phương chia cho 4 chỉ có thể có số dư là 0 hoặc 1. 

Ta có : \(\left(2k\right)^2=4k^2⋮4\) nên khi chia 4 có số dư là 0.

\(\left(2k+1\right)^2=4k\left(k+1\right)+1\) chia 4 dư 1.

Khách vãng lai đã xóa
Hoàng Ngọc Ý Thơ
Xem chi tiết
Nguyễn An
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:34

Đặt \(A=2^4+2^7+2^n=144+2^n\)

Nếu \(n\) lẻ \(\Rightarrow n=2k+1\Rightarrow A=144+2.4^k\equiv2\left(mod3\right)\Rightarrow A\) không thể là SCP (loại)

\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)

\(\Rightarrow144+2^{2k}=m^2\)

\(\Rightarrow144=m^2-\left(2^k\right)^2\)

\(\Rightarrow144=\left(m-2^k\right)\left(m+2^k\right)\)

Giải pt ước số cơ bản này ta được đúng 1 nghiệm thỏa mãn là \(2^k=16\Rightarrow k=4\Rightarrow n=8\)

Hoàng Ngọc Anh
25 tháng 1 2022 lúc 19:50

tôi thấy  k=8^2,8^3,8^4.............

Khách vãng lai đã xóa
gươm hồ
Xem chi tiết

- Với \(n=0\) không thỏa mãn

- Với \(n=1\) không thỏa mãn

- Với \(n=2\Rightarrow2^n+8n+5=25\) là số chính phương (thỏa mãn)

- Với \(n>2\Rightarrow2^n⋮8\Rightarrow2^n+8n+5\) chia 8 dư 5

Mà 1 SCP chia 8 chỉ có các số dư là 0, 1, 4 nên \(2^n+8n+5\) ko thể là SCP 

Vậy \(n=2\) là giá trị duy nhất thỏa mãn yêu cầu