Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Xương Hưng
Xem chi tiết
Nguyễn Huy Tú
26 tháng 2 2022 lúc 17:46

Vì AD là phân giác nên 

\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\Rightarrow\dfrac{DC}{AC}=\dfrac{BD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{DC}{AC}=\dfrac{BD}{AB}=\dfrac{6}{12}=\dfrac{1}{2}\Rightarrow DC=4cm;DB=2cm\)

Vũ Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 8 2021 lúc 22:05

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{5}\)

\(\Leftrightarrow AB=\dfrac{4}{5}AC\)

Ta có: BC=BD+CD

nên BC=4+5

hay BC=9cm

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{41}{25}=9\)

\(\Leftrightarrow AC^2=\dfrac{225}{41}\)

\(\Leftrightarrow AC=\dfrac{15\sqrt{41}}{41}\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{12\sqrt{41}}{41}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{16}{41}\left(cm\right)\\CH=\dfrac{353}{41}\left(cm\right)\\AH=\dfrac{4\sqrt{353}}{41}\left(cm\right)\end{matrix}\right.\)

Nguyễn Hoàng Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 12 2023 lúc 13:56

a: Xét ΔOAD và ΔOMK có

\(\widehat{OAD}=\widehat{OMK}\)(hai góc so le trong, AD//MK)

\(\widehat{AOD}=\widehat{MOK}\)

Do đó: ΔOAD đồng dạng với ΔOMK

=>\(\dfrac{OA}{OM}=\dfrac{OD}{OK}\)

=>\(OA\cdot OK=OM\cdot OD\)

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{CA}\)

=>\(\dfrac{BD}{5}=\dfrac{CD}{10}\)

=>\(\dfrac{BD}{1}=\dfrac{CD}{2}\)

mà BD+CD=BC=12

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{1}=\dfrac{CD}{2}=\dfrac{BD+CD}{1+2}=\dfrac{12}{3}=4\)

=>\(BD=4\left(cm\right);CD=8\left(cm\right)\)

c: ME//AD

=>\(\widehat{AEK}=\widehat{DAC}\)(hai góc so le trong)(1)

KM//AD

=>\(\widehat{AKE}=\widehat{BAD}\)(hai góc đồng vị)(2)

AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{AEK}=\widehat{AKE}\)

=>AE=AK

Xét ΔCAD có EM//AD

nên \(\dfrac{CE}{CA}=\dfrac{CM}{CD}\)

=>\(\dfrac{CE}{CM}=\dfrac{CA}{CD}\)

mà \(\dfrac{CA}{CD}=\dfrac{BA}{BD}\)

nên \(\dfrac{CE}{CM}=\dfrac{BA}{BD}\)

=>\(\dfrac{AB}{BD}=\dfrac{EC}{CM}\)

=>\(\dfrac{AB}{EC}=\dfrac{BD}{CM}\)(ĐPCM)

Phanh Hà
Xem chi tiết
con gai luon luon dung
18 tháng 12 2015 lúc 18:09

Tick , rồi mình trả lời cho

Linh Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 22:59

b) Xét ΔABC vuông tại A và ΔDBE vuông tại D có 

AB=BD(gt)

\(\widehat{ABC}\) chung

Do đó: ΔABC=ΔDBE(cạnh góc vuông-góc nhọn kề)

c) Xét ΔBAH vuông tại A và ΔBDH vuông tại D có 

BH chung

BA=BD(gt)

Do đó: ΔBAH=ΔBDH(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)

hay BH là tia phân giác của \(\widehat{ABC}\)

d) Ta có: BH là tia phân giác của \(\widehat{ABC}\)(cmt)

nên \(\widehat{ABH}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

Ta có: \(\widehat{ABH}+\widehat{HBK}=90^0\)

\(\Leftrightarrow\widehat{HBK}+30^0=90^0\)

hay \(\widehat{HBK}=60^0\)

Xét ΔCHD vuông tại D và ΔCBA vuông tại A có 

\(\widehat{ACB}\) chung

Do đó: ΔCHD\(\sim\)ΔCBA(g-g)

Suy ra: \(\widehat{CHD}=\widehat{CBA}\)(hai góc tương ứng)

\(\Leftrightarrow\widehat{CHD}=60^0\)

mà \(\widehat{CHD}=\widehat{HKB}\)(hai góc so le trong, BK//AC)

nên \(\widehat{HKB}=60^0\)

Xét ΔHBK có 

\(\widehat{HKB}=60^0\)(cmt)

\(\widehat{HBK}=60^0\)(cmt)

Do đó: ΔHBK đều(Dấu hiệu nhận biết tam giác đều)

HoangDack VN
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 8 2021 lúc 14:30

Bài 1: 

Xét ΔABC có

MD//AB

nên \(\dfrac{AD}{AC}=\dfrac{BM}{BC}\)

Xét ΔABC có 

ME//AC

nên \(\dfrac{AE}{AB}=\dfrac{CM}{CB}\)

Ta có: \(\dfrac{AE}{AB}+\dfrac{AD}{AC}\)

\(=\dfrac{BM}{BC}+\dfrac{CM}{BC}\)

=1

Shauna
27 tháng 8 2021 lúc 14:41

undefined

level max
Xem chi tiết
Dark_Hole
27 tháng 2 2022 lúc 11:00

Xét tam giác vuông ABC có:

\(AB^2+AC^2=BC^2\\ =>3^2+AC^2=5^2\\ =>AC^2=16\\ =>AC=4cm\)

Tạ Phương Linh
27 tháng 2 2022 lúc 11:04

= 4cm

Hoàng Ngân Hà
27 tháng 2 2022 lúc 15:50

= 4cm

Trần Hoàng Hải
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 12:51

a: Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/2=6/5=1,2

=>AD=3,6cm; CD=2,4cm

Xét ΔABCcó ED//BC

nên ED/BC=AD/AC

=>ED/4=3,6/6=3/5

=>ED=2,4cm

b: Xét ΔADB và ΔAEC có

góc A chung

góc ABD=góc ACE

=>ΔABD đồng dạng với ΔACE

c: Xét ΔIEB và ΔIDC có

góc IEB=góc IDC

góc EIB=góc DIC

=>ΔIEB đồng dạng với ΔIDC

=>EB/DC=IE/ID

=>IE*DC=EB*ID

Lê Đức Minh
Xem chi tiết