Tìm x y z để xyz-yz-xz+x+y+z=2020
câu1 .a2+b2-a2b2+ab-a-b
câu 2 . xy.(x+y)-yz.(y+z)+xz(x-z)
câu3 .xyz-(x+y+yz+xz)+(x+y+2)-1
Câu 1:
\(a^2+b^2-a^2b^2+ab-a-b\)
\(=a^2\left(1-b^2\right)+b\left(b-1\right)+a\left(b-1\right)\)
\(=-a^2\left(b-1\right)\left(b+1\right)+\left(b-1\right)\left(a+b\right)\)
\(=\left(b-1\right)\left(-a^2b-a^2+a+b\right)\)
\(=\left(b-1\right)\cdot\left[-b\left(a^2-1\right)-a\left(a-1\right)\right]\)
\(=\left(b-1\right)\left(a-1\right)\left[-b\left(a+1\right)-a\right]\)
chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
chứng minh nếu x2−yzx/(1−yz)=y2−zxy/(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
tìm các số tự nhiên x,y,z (x>y>z) sao cho xyz-xy-yz-zx+x+y+z=2020
Tìm các số tự nhiên x,y,z biết x>y>z sao cho xyz-xy-yz-zx+x+y+z=2020
ko vt lại đề
(xyz-xy)-(yz-y)-(zx-x)+(z-1)=2019
=>xy(z-1)-y(z-1)-x(z-1)+(z-1)=2019
=> (z-1)(xy-y-x+1)=2019
=> (z-1)(z-1)(y-1)=2019
vì x>y>z>0 => (x-1) khác (y-1) khác (z-1)=> x-1>y-1>z-1
nên (z-1),(x-1)và (y-1) thuộc ước của 2019={ 1,3,673,2019}
(x-1)(y-1)(z-1)= 673.3.1=2019
=> x-1=673=>x=674
=>y-1=3=>y=4
=> z-1 =1=>z=2
Vậy x=674,y=4,z=2
Cho xyz = 2020
CMR: \(\frac{2020x}{xy+2020x+2020}+\frac{y}{yz+y+2020}+\frac{z}{xz+z+1}=1\)
Có \(\frac{2020x}{xy+2020x+2020}=\frac{2020}{y+2020+yz}\) (1)và \(\frac{z}{xz+z+1}=\frac{yz}{2020+yz+y}\)(2)
coog (1) và (2) và y/yz+y+2020 có
ĐPCM
tìm m để hệ phương trình có nghiệm nguyên dương x+y+z=1; xy+yz+xz=9m; xyz=m
cho \(x\ge1,y\ge2,z\ge3\)
tìm GTLN của \(A=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(=>A=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
áp dụng BĐT AM-GM
\(=>\sqrt{x-1}\le\dfrac{x-1+1}{2}=\dfrac{x}{2}\)
\(=>\dfrac{\sqrt{x-1}}{x}\le\dfrac{\dfrac{x}{2}}{x}=\dfrac{1}{2}\left(1\right)\)
có \(\dfrac{\sqrt{y-2}}{y}=\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\)
\(=>\sqrt{\left(y-2\right)2}\le\dfrac{y-2+2}{2}=\dfrac{y}{2}\)
\(=>\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\le\dfrac{\dfrac{y}{2}}{\sqrt{2}.y}=\dfrac{1}{2\sqrt{2}}\left(2\right)\)
tương tự \(=>\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\left(3\right)\)
(1)(2)(3)\(=>A\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
B=xyz+xz-yz-z+xy+x-y-1với x=-9 ,y=-21,z=-31
\(xyz+xz+yz-z+xy+x-y-1\)
\(=\left(xyz+xz+yz-z\right)+\left(xy+x-y-1\right)\)
\(=z\left(xy+x-y-1\right)+\left(xy+x-y-1\right)\)
\(=\left(z+1\right)\left(xy+x-y-1\right)\)
Thay x=-9, y=-21 và x=-31 vào ta có:
\(=\left(-31+1\right)\cdot\left\{\left[-9\cdot\left(-21\right)\right]+\left(-9\right)-\left(-21\right)-1\right\}\)
\(=-31\cdot\left(180+21-1\right)\)
\(=-30\cdot200\)
\(=-6000\)
\(B=xyz+xz-yz-z+xy+x-y-1\)
\(=\left(xyz+xz-yz-z\right)+\left(xy+x-y-1\right)\)
\(=z\left(xy+x-y-1\right)+\left(xy+x-y-1\right)\)
\(=\left(xy+x-y-1\right)\left(z+1\right)\)
Với \(x=-9;y=-21;z=-31\), ta được:
\(B=\left[-9\cdot\left(-21\right)-9-\left(-21\right)-1\right]\cdot\left(-31+1\right)\)
\(=200\cdot\left(-30\right)\)
\(=-6000\)