Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thầy Cao Đô
Xem chi tiết
Nguyễn Tất Đạt
17 tháng 5 2021 lúc 21:24

1. \(\left|\frac{2x^2-x}{3x-4}\right|\ge1\) Điều kiện: \(x\ne\frac{4}{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2-x}{3x-4}\ge1\\\frac{2x^2-x}{3x-4}\le-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{x^2-2x+2}{3x-4}\ge0\\\frac{x^2+x-2}{3x-4}\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>\frac{4}{3}\\x\in(-\infty;-2]U[1;\frac{4}{3})\end{cases}}\Leftrightarrow x\in(-\infty;-2]U[1;+\infty)\backslash\left\{\frac{4}{3}\right\}\)

2.\(\hept{\begin{cases}x^2\le-2x+3\left(1\right)\\\left(m+1\right)x\ge2m-1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x^2+2x-3\le0\Leftrightarrow-3\le x\le1\)

+) Nếu \(m=-1\) thì (2) vô nghiệm, suy ra \(m\ne-1\)

+) Nếu \(m>-1\) thì \(\left(2\right)\Leftrightarrow x\ge\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=1\Leftrightarrow m=2>-1\)

+) Nếu \(m< -1\)thì \(\left(2\right)\Leftrightarrow x\le\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=-3\Leftrightarrow m=-\frac{2}{5}< -1\)

Vậy \(m=\left\{\frac{-2}{5};2\right\}\)

Khách vãng lai đã xóa
Nguyễn VIP 5 sao
19 tháng 5 2021 lúc 21:40

1. |2x2−x3x−4 |≥1 Điều kiện: x≠43 

⇔[

2x2−x3x−4 ≥1
2x2−x3x−4 ≤−1

⇔[

x2−2x+23x−4 ≥0
x2+x−23x−4 ≤0

⇔[

x>43 
x∈(−∞;−2]U[1;43 )

⇔x∈(−∞;−2]U[1;+∞)\{43 }

2.{

x2≤−2x+3(1)
(m+1)x≥2m−1(2)

(1)⇔x2+2x−3≤0⇔−3≤x≤1

Khách vãng lai đã xóa
Phạm Hữu Ngọc Minh
18 tháng 9 2021 lúc 9:23

\Leftrightarrow \left[\begin{aligned}&{x>\dfrac{4}{3} } \\ &{1\le x<\dfrac{4}{3} } \\ &{x\le -2} \end{aligned}\right. .

Tập nghiệm :S=\left(-\infty ;-2\right]\cup \left[1;\dfrac{4}{3} \right)\cup \left(\dfrac{4}{3} ;+\infty \right).

2.

Ta có: \left\{\begin{aligned}&{x^{2} \le -2x+3} \\ &{\left(m+1\right)x\ge 2m-1} \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&{x^{2} +2x-3\le 0} \\ &{\left(m+1\right)x\ge 2m-1} \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&{-3\le x\le 1} \\ &{\left(m+1\right)x\ge 2m-1} \end{aligned}\right..

+ Trường hợp 1: m=-1

Hệ BPT trở thành: \left\{\begin{aligned}& {-3\le x\le 1} \\ &{0\ge -3} \end{aligned}\right.. Hệ luôn đúng với \forall x\in \left[-3;1\right].

Vậy m=-1 loại.

+ Trường hợp 2: m>-1

Hệ BPT trở thành: \left\{\begin{aligned}& {-3\le x\le 1} \\ &{x\ge \dfrac{2m-1}{m+1} } \end{aligned}\right..

Hệ có nghiệm duy nhất khi \dfrac{2m-1}{m+1} =1\Leftrightarrow 2m-1=m+1\Leftrightarrow m=2 (nhận).

+ Trường hợp 3: m<-1 Hệ BPT trở thành: \left\{\begin{aligned}& {-3\le x\le 1} \\ &{x\le \dfrac{2m-1}{m+1} } \end{aligned}\right..

Hệ có nghiệm duy nhất khi \dfrac{2m-1}{m+1} =-3\Leftrightarrow 2m-1=-3m-3\Leftrightarrow m=\dfrac{-2}{5} (loại). Vậy m=2 hệ có nghiệm duy nhất.

Khách vãng lai đã xóa
Bùi Nam Khánh
Xem chi tiết
ILoveMath
15 tháng 1 2022 lúc 22:24

ĐKXĐ:\(\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne7\end{matrix}\right.\)

\(\dfrac{2\left(x-4\right)}{\left(x-1\right)\left(x-7\right)}\ge\dfrac{1}{x-2}\\ \Leftrightarrow\dfrac{2x-8}{x^2-8x+7}\ge\dfrac{1}{x-2}\\ \Leftrightarrow\left(2x-8\right)\left(x-2\right)\ge x^2-8x+7\)

\(\Leftrightarrow2x^2-12x+16\ge x^2-8x+7\\ \Leftrightarrow x^2-4x+9\ge0\left(luôn.đúng\right)\)

Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 8:58

\(a,0,1^{2-x}>0,1^{4+2x}\\ \Leftrightarrow2-x>2x+4\\ \Leftrightarrow3x< -2\\ \Leftrightarrow x< -\dfrac{2}{3}\)

\(b,2\cdot5^{2x+1}\le3\\ \Leftrightarrow5^{2x+1}\le\dfrac{3}{2}\\ \Leftrightarrow2x+1\le log_5\left(\dfrac{3}{2}\right)\\ \Leftrightarrow2x\le log_5\left(\dfrac{3}{2}\right)-1\\ \Leftrightarrow x\le\dfrac{1}{2}log_5\left(\dfrac{3}{2}\right)-\dfrac{1}{2}\\ \Leftrightarrow x\le log_5\left(\dfrac{\sqrt{30}}{10}\right)\)

Hà Quang Minh
24 tháng 8 2023 lúc 9:01

c, ĐK: \(x>-7\)

\(log_3\left(x+7\right)\ge-1\\ \Leftrightarrow x+7\ge\dfrac{1}{3}\\ \Leftrightarrow x\ge-\dfrac{20}{3}\)

Kết hợp với ĐKXĐ, ta có:\(x\ge-\dfrac{20}{3}\)

d, ĐK: \(x>\dfrac{1}{2}\)

\(log_{0,5}\left(x+7\right)\ge log_{0,5}\left(2x-1\right)\\ \Leftrightarrow x+7\le2x-1\\ \Leftrightarrow x\ge8\)

Kết hợp với ĐKXĐ, ta được: \(x\ge8\)

Nguyễn Hà Minh Thanh
Xem chi tiết
Trần Khánh Vân
6 tháng 5 2016 lúc 14:00

Điều kiện xác định :\(x\ne-1\)

Ta có : \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\Rightarrow\left(2-\sqrt{3}\right)=\left(2+\sqrt{3}\right)^{-1}\)

\(\Rightarrow\) Bất phương trình : \(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2+\sqrt{3}\right)^{\frac{1-x}{x+1}}\)

                               \(\Leftrightarrow x-1\ge\frac{1-x}{x+1}\)

                               \(\Leftrightarrow\frac{\left(x-1\right)\left(x+2\right)}{x+1}\ge0\)

                               \(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\x\ge1\end{array}\right.\)

Vậy bất phương trình có tập nghiệm là \(S=\)[ -2; -1) \(\cup\) [1; \(+\infty\))

 

Buddy
Xem chi tiết
Hà Quang Minh
26 tháng 8 2023 lúc 12:50

a, ĐK: \(x-2>0\Rightarrow x>2\)

\(log_2\left(x-2\right)< 2\\ \Leftrightarrow x-2< 4\\ \Leftrightarrow x< 6\)

Kết hợp với ĐKXĐ, ta được: \(2< x< 6\)

b, ĐK: \(2x-1>0\Leftrightarrow x>\dfrac{1}{2}\)

\(log\left(x+1\right)\ge log\left(2x-1\right)\\ \Leftrightarrow x+1\ge2x-1\\ \Leftrightarrow x\le2\)

Kết hợp với ĐKXĐ, ta được: \(\dfrac{1}{2}< x\le2\)

Trần Hoàng Uyên Nhi
Xem chi tiết
ngonhuminh
23 tháng 12 2016 lúc 23:25

\(x< -1\) VT>0 VP<0  hiển nhiên đúng=> x<-1 là nghiệm

xét x>=-1

\(\Leftrightarrow x^3+1\ge x+1\Leftrightarrow x^3\ge x\Leftrightarrow x\left(x^2-1\right)\ge0\)\(\Rightarrow\orbr{\begin{cases}-1\le x\le0\\x\ge1\end{cases}}\)

Tổng hợp lại: \(\orbr{\begin{cases}x\le0\\x\ge1\end{cases}}\)

Nguyễn Khánh Toàn
Xem chi tiết
Lương Đại
31 tháng 3 2022 lúc 14:48

bạn tải ảnh về r up lại đi bạn

Lương Đại
31 tháng 3 2022 lúc 15:50

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 14:40

a) \({2^x} > 16 \Leftrightarrow {2^x} > {2^4} \Leftrightarrow x > 4\) (do \(2 > 1\)) .

b) \(0,{1^x} \le 0,001 \Leftrightarrow 0,{1^x} \le 0,{1^3} \Leftrightarrow x \ge 3\) (do \(0 < 0,1 < 1\)).

c) \({\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{{25}}} \right)^x} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {{{\left( {\frac{1}{5}} \right)}^2}} \right)^x} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{5}} \right)^{2x}} \Leftrightarrow x - 2 \le 2{\rm{x}}\) (do \(0 < \frac{1}{5} < 1\))

\( \Leftrightarrow x \ge  - 2\).

Đạt Kien
Xem chi tiết