Cho tam giác ABC vuông tại AH vuông góc với BC , HI vuông với AB, HK vuông với AC.
Cmr : IB . KC = KH. IH
Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC, kẻ HI vuông góc với AB, M thuộc tia đối của tia IH sao cho IM = IH, kẻ HK vuông góc với AC, N thuộc tia đối của tia KH sao cho KN = KH. a) Chứng minh tam giác AMN cân tại A b) MN cắt AB, AC ở E, F. Chứng minh HA là phân giác của góc EHF c) Chứng minh 3 đường BF, CE, AH đồng quy
câu c có vẻ sai thông cảm
a: Xét ΔAHE có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AB là phân giác của góc HAE và AE=AH
Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHF cân tại A
=>AC là phân giác của góc HAF và AH=AF
=>AE=AF
Xét ΔAHM và ΔAEM có
AH=AE
góc HAM=góc EAM
AM chung
=>ΔAHM=ΔAEM
=>góc AHM=góc AEM
Xét ΔAHN và ΔAFN có
AH=AF
góc HAN=góc FAN
AN chung
=>ΔAHN=ΔAFN
=>góc AHN=góc AFN
=>góc AHN=góc AHM
=>HA là phân giác của góc MHN
b: Xét ΔHEF có HI/HE=HK/HF
nên IK//EF
=>IK//MN
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC), kẻ HI vuông góc với AB (I thuộc AB), HK vuông góc với AC( K thuộc AC). Trên tia đối của IH lấy điểm M sao cho IH = IM. Trên tia đối của tia KH lấy điểm N sao cho KH = KN. Vẽ AD, AE theo thứ tự là các tia phân giác của góc BAH và góc CAH(D, E thuộc BC). Tính DE biết AB = 3cm, AC = 4cm.
Em vừa nghĩ ra 2 cách làm bằng kiến thức lớp 7, co check giùm em nhé!
Ta có: \(\widehat{CAD}=90^0-\widehat{DAB}\)
và \(\widehat{CDA}=90^0-\widehat{HAD}\)
Mà \(\widehat{DAB}=\widehat{HAD}\left(gt\right)\Rightarrow AC=DC\)
Tương tự ta có: AB = EB
\(\Rightarrow AB+AC=EB+DC\)
\(=ED+DB+DC=DE+BC\)
\(\Rightarrow DE=AB+AC-BC=3+4-5=2\left(cm\right)\)
Vậy DE = 2 cm
Ta có: \(\Delta\)ABC vuông tại A
=> BC\(^2\)=AB\(^2\)+ AC\(^2\)= 3\(^2\)+ 4\(^2\)= 25 => BC = 5 (cm)
Có: \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)
=> AH = 2,4 (cm)
Có: \(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)(cm)
=> BH = 5 - 3,2 = 1,8 ( cm )
AE là phân giác ^CAH => \(\frac{EC}{EH}=\frac{AC}{AH}=\frac{4}{2,4}\) mà EC + EH = CH = 3,2
=> EC = 2 ( cm ) ; EH = 1,2 ( cm )
AD là phân giác ^BAH => \(\frac{DH}{DB}=\frac{AH}{AB}=\frac{2,4}{3}\); mà DH + DB = HB = 1,8
=> DH = 0,8 ( cm ) ; BD = 1( cm )
Vậy DE = DH + HE = 0,8 + 1,2 = 2 ( cm )
Cho tam giác ABC vuông tại A (AB < AC) và các điểm M, H theo thứ tự thuộc AC, BC sao cho MH vuông góc với BC và MH=HB. Vẽ HI vuông góc với AB, HK vuông góc với AC. Chứng minh rằng
a) tam giác BHI= tam giác MHK
b) BI + AM = IH
a: \(\widehat{MHK}+\widehat{KMH}=90^0\)(ΔMHK vuông tại K)
\(\widehat{HMC}+\widehat{HCM}=90^0\)(ΔMHC vuông tại H)
Do đó: \(\widehat{MHK}=\widehat{HCM}\)
=>\(\widehat{MHK}=\widehat{ACB}\)(1)
HI\(\perp\)AB
AC\(\perp\)AB
Do đó: HI//AC
=>\(\widehat{BHI}=\widehat{BCA}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{MHK}=\widehat{BHI}\)
Xét ΔMHK vuông tại K và ΔBHI vuông tại I có
MH=BH
\(\widehat{MHK}=\widehat{BHI}\)
Do đó: ΔMHK=ΔBHI
b: ΔMHK=ΔBHI
=>MK=BI
Xét tứ giác AIHK có
\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
Do đó: AIHK là hình chữ nhật
=>AK=HI
BI+AM
=MK+AM
=AK
=IH
cho tam giác abc có ca=cb. kẻ ci vuông góc với ab(i thuộc ab)
a,CMR IA=IB. biết aci=bci
b, kẻ ih vuông với ac(h thuộc ac), kẻ IK vuông với BC (K thuộc BC). So Sanh IH va IK. Doan HK cat CI tai M .CMR HK//AB
1. Cho tam giác ABC vẽ AH vuông góc với BC, HI vuông góc với AB, HK vuông góc với AC trên tia đối của các tia IH, KH thứ tự
a) A nằm trên đường trung trực của MN
b) CMR: A là tâm đường tròn ngoại tiếp tam giác MHN
c) Tính góc AMN nếu góc BAC=60 độ
Cho tam giác ABC có 3 góc nhọn. Kẻ AH vuông góc với BC. Vẽ HI và HK lần lượt vuông góc với AB, AC. Trên tia đối của tia IH, KH lần lượt lấy các điểm E và F sao cho IE = IH và KF = KH. Cho góc BAC = 45 độ, tính góc EAF.
Xét ΔAIE vuông tại I và ΔAIH vuông tại I có
AH chung
IE=IH
Do đó: ΔAIE=ΔAIH
Xét ΔAHF có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAHF cân tại A
=>AH=AF
Ta có: ΔAEI=ΔAHI
=>AE=AH và \(\widehat{EAI}=\widehat{HAI}\)
Ta có: AE=AH
AH=AF
Do đó: AE=AF
Ta có: \(\widehat{EAI}=\widehat{HAI}\)
mà AI nằm giữa AE,AH
nên AI là phân giác của góc EAH
=>\(\widehat{EAH}=2\cdot\widehat{IAH}\)
Ta có; ΔAHF cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAF
=>\(\widehat{HAF}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{EAF}=\widehat{EAH}+\widehat{FAH}\)
\(=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
\(=2\cdot\widehat{BAC}=2\cdot45^0=90^0\)
Cho tam giác ABC, góc A = 90 độ, AH vuông góc với BC. Trên đường thẳng vuông góc với BC tại C lấy I sao cho CI=AH. I khác A với nửa mp bờ là BC. CMR:
a) IH=AC
b) góc CIH=góc ABC
c) HI vuông góc với AB
cho tam giác ABC có AB<AC. Kẻ AH vuông góc với BC (H thuộc BC); HI vuông góc với AC (I thuộc AC). Trên tia đối của tia IH lấy điểm E sao cho IE = IH.
a, cmr: AE vuông góc với CE
b, cmr: góc BAH < góc CAH