Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huy Trần
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 10 2021 lúc 14:03

\(A=\dfrac{1}{x^2+2}\)

Ta có \(x^2+2\ge2\Leftrightarrow\dfrac{1}{x^2+2}\le\dfrac{1}{2}\)

Vậy \(A_{max}=\dfrac{1}{2}\Leftrightarrow x=0\)

\(B=-\left|x+2015\right|+4\le4\\ B_{max}=4\Leftrightarrow x+2015=0\Leftrightarrow x=-2015\)

Huy Trần
1 tháng 11 2021 lúc 18:48

x2+2≥2⇔1x2+2≤12x2+2≥2⇔1x2+2≤12

Vậy 

addfx
Xem chi tiết
Kiều Vũ Linh
2 tháng 10 2023 lúc 16:23

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

Xem chi tiết
Nguyễn Đức Trí
18 tháng 9 2023 lúc 14:57

a) \(A=\sqrt[]{x^2-2x+5}\)

\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)

\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)

mà \(\left(x+1\right)^2\ge0,\forall x\in R\)

\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)

Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)

Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)

b) \(B=5-\sqrt[]{x^2-6x+14}\)

\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)

Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)

\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)

\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)

Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)

Ko cần bít
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
2 tháng 7 2017 lúc 20:16

Sorry nhá mk nhầm dấu + nên kq sai : 

Ta có : (x + 3)(x - 11) + 2003

= x2 - 8x + 1970

= x2 - 8x + 16 + 1954

= (x - 4)2 + 1954

Mà (x - 4)2 \(\ge0\forall x\)

Nên : (x - 4)2 + 1954 \(\ge1954\forall x\)

Vậy GTNN của biểu thức là : 1954 khi và chỉ khi x = 4

l҉o҉n҉g҉ d҉z҉
2 tháng 7 2017 lúc 19:12

Ta có : (x + 3)(x - 11) + 2003

= x2 - 8x + 33 + 2003

= x2 - 8x + 2026

= x2 - 8x + 16 + 2010

= (x - 4)2 + 2010

Mà (x - 4)\(\ge0\forall x\)

Nên :  (x - 4)2 + 2010 \(\ge2010\forall x\)

Vậy GTNN của biểu thức là : 2010 khi và chỉ khi x = 4

Ko cần bít
2 tháng 7 2017 lúc 19:17

A=(x+3)(x-11)+2003=x^2-8x+1970 chứ nhỉ?

Bùi Tuấn Trung
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 14:47

1:

a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

căn x+1>=1

=>2/căn x+1<=2

=>-2/căn x+1>=-2

=>A>=-2+1=-1

Dấu = xảy ra khi x=0

b: loading...

Nguyễn Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 20:57

Bài 1: 

a: BCNN(10;12)=60

b: BCNN(24;10)=120

c: BCNN(4;14;26)=364

d: BCNN(6;8;10)=120

Lê Phan Thảo Đan
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:14

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:20

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

Lê Phương Mai
Xem chi tiết
Trên con đường thành côn...
19 tháng 7 2021 lúc 18:31

undefined

Trên con đường thành côn...
19 tháng 7 2021 lúc 18:37

undefinedundefined

Tư Linh
19 tháng 7 2021 lúc 18:40

bạn xem lại đề bài 1 là GTNN hay GTLN nha

Út Thảo
1 tháng 8 2021 lúc 19:04

A=-(x^2-4x-2) =-(x-2)^2+6 =<6

Max A=6 khi x=2

B=-(x^2 -x-2)= -(x-1/2)^2+9/4=<9/4

Max B=9/4 khi x=1/2

 

missing you =
1 tháng 8 2021 lúc 19:04

\(A=-\left(x^2-4x-2\right)=-\left(x^2-4x+4-6\right)=-\left(x-2\right)^2+6\le6\)

dấu"=" xảy ra<=>x=2

\(B=-\left(x^2-x-2\right)=-\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) dấu""=" xảy ra<=>x=1/2

Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 0:05

a) Ta có: \(A=-x^2+4x+2\)

\(=-\left(x^2-4x-2\right)\)

\(=-\left(x-2\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi x=2

b) Ta có: \(B=-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)