Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ctuu
Xem chi tiết
Nguyễn Thanh Hằng
16 tháng 4 2021 lúc 20:37

a/ Xét \(\Delta ABC\) và \(\Delta HAC\) có :

\(\left\{{}\begin{matrix}\widehat{C}chung\\\widehat{BAC}=\widehat{AHC}=90^0\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABC\sim HAC\left(g-g\right)\)

b/ \(BC=\sqrt{AB^2+AC^2}=10cm\)

\(AH.BC=AB.AC\Leftrightarrow AH=\dfrac{AB.AC}{BC}=4,8cm\)

c/ \(\Delta HEA\sim\Delta CEH\left(g-g\right)\)

\(\Leftrightarrow\dfrac{HE}{CE}=\dfrac{EA}{HE}\Leftrightarrow HE^2=EA.EC\left(đpcm\right)\)

 

Đinh Thị Trang Nhi
16 tháng 4 2021 lúc 20:30

a) Xét ΔHAC và ΔABC có:

∠(ACH ) là góc chung

∠(BAC)= ∠(AHC) = 90o

⇒ ΔHAC ∼ ΔABC (g.g)

b) Xét ΔHAD và ΔBAH có:

∠(DAH ) là góc chung

∠(ADH) = ∠(AHB) = 90o

⇒ ΔHAD ∼ ΔBAH (g.g)

c) Tứ giác ADHE có 3 góc vuông ⇒ ADHE là hình chữ nhật.

⇒ ΔADH= ΔAEH ( c.c.c) ⇒ ∠(DHA)= ∠(DEA)

Mặt khác: ΔHAD ∼ ΔBAH ⇒ ∠(DHA)= ∠(BAH)

∠(DEA)= ∠(BAH)

Xét ΔEAD và ΔBAC có:

∠(DEA)= ∠(BAH)

∠(DAE ) là góc chung

ΔEAD ∼ ΔBAC (g.g)

d) ΔEAD ∼ ΔBAC

ΔABC vuông tại A, theo định lí Pytago:

Theo b, ta có:

 

 

 

 

 

 

 

 

 

Nguyễn Lê Phước Thịnh
16 tháng 4 2021 lúc 22:50

1) Xét ΔABC vuông tại A và ΔHAC vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

duy nguyễn nhất
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2023 lúc 21:48

a:BC=căn 6^2+8^2=10cm

Xét ΔABC có AD là phân giác

nên BD/DC=AB/AC

=>BD/DC=3/4

=>BD/3=CD/4=(BD+CD)/(3+4)=10/7

=>BD=30/7cm

b: Xét ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

=>S CED/S CAB=(CD/CB)^2=(4/7)^2=16/49

 

Bích Khuê Ngô
Xem chi tiết
Kudo Shinichi
29 tháng 5 2022 lúc 17:15

Bạn tự vẽ hình nhé

a)

Áp dụng định lý Py-ta-go vào \(\Delta ABC:\)

\(BC^2=AB^2+AC^2\\ \Rightarrow BC^2=8^2+6^2\\ \Rightarrow BC^2=64+36\\ \Rightarrow BC^2=100\\ \Rightarrow BC=10\left(cm\right)\)

b)

Xét \(\Delta BGC\) và \(\Delta DGC\) có:

\(AB=AD\left(GT\right)\\ AG:chung\\ \widehat{BAC}=\widehat{DAC}\left(=90^o\right)\)

\(\Rightarrow\Delta BGC=\Delta DGC\left(c-g-c\right)\)

c)

Xét \(\Delta BCD\) có:

\(AB=AD\left(GT\right)\\ \dfrac{AG}{DG}=\dfrac{2}{6}=\dfrac{1}{3}\Rightarrow\dfrac{CG}{AC}=1-\dfrac{1}{3}=\dfrac{2}{3}\)

=> G là trọng tâm của \(\Delta BCD\)

=> DG là đường trung tuyến của \(\Delta BCD\) ứng với cạnh BC

Hay DG đi qua trung điểm BC

cần giải
Xem chi tiết
Trí Tiên
17 tháng 7 2020 lúc 20:02

D A C B E M F y G 1 2 1 2

VẼ By là tia phân giác của \(\widehat{ABC}\)CẮT AC TẠI G

A) XÉT \(\Delta BAG\)VÀ \(\Delta BEG\)

\(\widehat{BAG}=\widehat{BEG}=90^o\)

BG LÀ CẠNH CHUNG

\(\widehat{B_1}=\widehat{B_2}\)( LẬP LUẬN)

=>\(\Delta BAG\)=\(\Delta BEG\)( CH-GN)

=>BA = BE

\(\Rightarrow\Delta ABE\)CÂN TẠI B ( ĐPCM)

VÌ \(\Delta BAG\)=\(\Delta BEG\)(CMT)

=> AG = GE 

XÉT \(\Delta AGD\)VÀ \(\Delta EGC\)

\(\widehat{G_1}=\widehat{G_2}\)( ĐỐI ĐỈNH )

 AG = GE ( CMT )

\(\widehat{DAG}=\widehat{CEG}=90^o\)

=>\(\Delta AGD\)=\(\Delta EGC\)( G-C-G )

=> AD = EC 

TA CÓ

 \(BA+AD=BD\)

\(BE+EC=BC\)

MÀ AD = EC(CMT) VÀ \(BA=BE\)(CMT)

=>\(BD=BC\)

=> \(\Delta BDC\)CÂN TẠI B

XÉT \(\Delta BDC\)CÂN TẠI B

\(\Rightarrow\widehat{BCD}=\frac{180^o-\widehat{B}}{2}\left(1\right)\)

XÉT ​\(\Delta BAE\)​CÂN TẠI B 

\(\Rightarrow\widehat{BEA}=\frac{180^o-\widehat{B}}{2}\left(2\right)\)

TỪ (1) VÀ (2) 

\(\Rightarrow\widehat{BCD}=\widehat{BEA}\)

 MÀ HAI GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ BẰNG NHAU

=>\(AE//CD\)(ĐPCM)

Khách vãng lai đã xóa
Trí Tiên
17 tháng 7 2020 lúc 20:19

b) vì AE // CD HAY AF // CD \(\Rightarrow\widehat{FAC}=\widehat{DCA}\)( SO LE TROG )

XÉT \(\Delta FAM\)VÀ \(\Delta DCM\)CÓ \(\widehat{FAC}=\widehat{DCA}\)HAY\(\widehat{FAM}=\widehat{DCM};AM=CM\left(GT\right);\widehat{AMF}=\widehat{CMF}\left(DD\right)\) 

=>\(\Delta FAM\)=\(\Delta DCM\)(G-C-G) 

\(\Rightarrow FM=DM\)

XÉT\(\Delta ADM\)VÀ \(\Delta CFM\)CÓ   \(AM=CM\left(GT\right);\widehat{AMD}=\widehat{CMF}\left(GT\right);FM=DM\left(CMT\right)\)

=>\(\Delta ADM\)=\(\Delta CFM\)(C-G-C)

\(\Rightarrow\widehat{DAM}=\widehat{FCM}=90^o\)

\(\widehat{FCM}=90^o\)

\(\Rightarrow CF\perp AC\left(ĐPCM\right)\)

Khách vãng lai đã xóa
cần giải
17 tháng 7 2020 lúc 20:38

cảm ơn bn nha mk ko bt k đúng cho bn kiểu j cả. mong bn thông cảm nha

Khách vãng lai đã xóa
Trần Thị Cẩm Thúy
Xem chi tiết
khucdannhi
Xem chi tiết
Lê Hồ Trọng Tín
30 tháng 4 2019 lúc 18:23

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABC, ta được:

AB2+AC2=32+62=45=BC2=>BC=\(\sqrt{45}\)cm

b) Xét \(\Delta\)BAD và \(\Delta\)EAD:

                 AE=AB(Do cùng bằng 3 cm)

                BAD=EAD

                AD chung

=>\(\Delta\)BAD=\(\Delta\)EAD(c-g-c)

c) Xét \(\Delta\)ABC và \(\Delta\)AEM:

                A chung

                AB=AE

                ABC=AEM( Suy ra trực tiếp từ câu b)

=>\(\Delta\)ABC=\(\Delta\)AEM=>AC=AM=>\(\Delta\)CAM vuông cân tại A

d) Áp dụng Định lý Pythagoras cho tam giác vuông CAM, ta được:

AC2+AM2=MC2=>2.AC2=MC2( Do \(\Delta\)CAM vuông cân tại A)

Lại có:BC2=AC2+AB2

Do: AC>AB(gt)

Nên:MC>BC

Mặt khác:\(\Delta\)ABC=\(\Delta\)AEM(chứng minh trên)=>BC=ME

Suy ra MC>ME

Huỳnh Ngọc
Xem chi tiết
Cỏ dại
Xem chi tiết
Yim Yim
24 tháng 4 2018 lúc 12:50

a)áp dụng định lý pitago ta có BC^2=AB^2+AB^2=8^2+6^2=100

=>BC=10

b ) Ta có AB = AD ( gt )
=> CA là đường trung tuyến của BD
CA vuông góc với BD ( t/g ABC vuông tại A )
=> Ca là đường cao của BD
mà CA là đường trung tuyến của BD ( chứng minh trên )
t/g BCD cân tại C
=> CA cũng là p/g của t/g ABC
=> góc BCA = góc DCA
BC = CD ( t/g BCD cân tại C ) 
EC : cạnh chung
suy ra t/g BEC = t/g DEC ( c - g - c )

c ) Trên trung tuyến CA có CE/AC = 6-2/6 = 2/3
ba đường trung tuyến của t/g BCD đồng quy tại E
=> DE là đường trung tuyến của BC 
=> DE đi qua trung điểm BC

Hoa Dương Trần
Xem chi tiết
phamduyanh
10 tháng 4 2019 lúc 21:19

?????????????

Ngưu Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2021 lúc 21:53

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: 

Áp dụng hệ thức lượng trong tam giác vuông ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông ΔABH vuông tại A có HD là đường cao ứng với cạnh huyền BA, ta được:

\(AD\cdot AB=AH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AE\cdot AC=AD\cdot AB\)

hay \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Xét ΔAED vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: ΔAED\(\sim\)ΔABC