\(8\le2^{m-n}< 2^9\times2^{-5}\)
Tìm m,n\(\in\)Z:
\(2^{-1}\times2^n+4\times2^n=9\times2^5\)
\(2^m-2^n=1984\)
\(\dfrac{1}{9}\times27^n=3^n\)
\(\left(\dfrac{4}{9}\right)^n=\left(\dfrac{3}{2}\right)^{-5}\)
\(\left(\dfrac{1}{3}\right)^m=\dfrac{1}{81}\)
\(-\dfrac{512}{343}=\left(-\dfrac{8}{7}\right)^n\)
a) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot2^5\)
\(\Rightarrow2^n\cdot4,5=288\)
\(\Rightarrow2^n=64\)
\(\Rightarrow n=6\)
b) \(2^m-2^n=1984\)
\(\Rightarrow2^n\cdot\left(2^{m-n}-1\right)=2^6\cdot31\)
\(\Rightarrow\left\{{}\begin{matrix}2^n=2^6\\2^{m-n}-1=31\end{matrix}\right.\)
\(\Rightarrow n=6\)
\(\Rightarrow2^{m-n}=32\Rightarrow m-n=5\Rightarrow m=11\)
Tìm \(n\in Z\)
\(\frac{81}{-3^n}=-243\)
\(\frac{1}{2}\times2^n+4\times2^n=9\times2^5\)
a) 81 = (-243)( - 3n)
33 = 35.3n
32.3n = 1
n =2 vì 32-2 = 3o = 1
b) 2n (1/2 +4) = 9.25
2n.9/2 = 9.25
2n = 26
n = 6
tích mình đi
ai tích mình
mình ko tích lại đâu
thanks
Tìm tất cả các số nguyên n biết :
a, \(\frac{1}{9}=27^n=3^n\)
b, \(2^{-1}\times2^n+4\times2^n=9\times2^5\)
c, \(\left(\frac{4}{9}\right)^n=\left(\frac{3}{2}\right)^{-5}\)
d, \(\left(\frac{0}{0,125}\right)^n=128\)
Tính:
a) \(\dfrac{9}{5}+\dfrac{2}{5}\times\dfrac{4}{6}\)
b) \(\dfrac{3}{8}\times2-\dfrac{6}{7}\times\dfrac{1}{3}\)
\(C=\dfrac{5\times4^6\times9^4-3^9\times\left(-8\right)^4}{4\times2^{13}\times3^8+2\times8^4\times\left(-27\right)^3}\)
\(C=\dfrac{5\times2^{12}\times3^8-3^9\times2^{12}}{2^2\times2^{13}\times3^8+2\times2^{12}\times\left(-3^9\right)}=\dfrac{3^8\times2^{12}\times\left(5-3\right)}{2^{15}\times3^8+2^{13}\times\left(-3\right)^9}\)
\(=\dfrac{3^8\times2^{12}\times2}{2^{13}\times3^8\times\left(4-3\right)}=\dfrac{1}{1}=1\)
\(#PaooNqoccc\)
Tính (theo mẫu).
Mẫu: \(5\times\dfrac{2}{9}=\dfrac{5}{1}\times\dfrac{2}{9}=\dfrac{5\times2}{1\times9}=\dfrac{10}{9}\) Ta có thể viết gọn như sau: \(5\times\dfrac{2}{9}=\dfrac{5\times2}{9}=\dfrac{10}{9}\) |
a) \(3\times\dfrac{4}{11}\) b) \(1\times\dfrac{5}{4}\) c) \(0\times\dfrac{2}{5}\)
a) \(3\times\dfrac{4}{11}=\dfrac{3\times4}{11}=\dfrac{12}{11}\)
b) \(1\times\dfrac{5}{4}=\dfrac{1\times5}{4}=\dfrac{5}{4}\)
c) \(0\times\dfrac{2}{5}=\dfrac{0\times2}{5}=\dfrac{0}{5}=0\)
a: \(=\dfrac{3\cdot4}{11}=\dfrac{12}{11}\)
b: \(=\dfrac{1\cdot5}{4}=\dfrac{5}{4}\)
c: \(=\dfrac{0\cdot2}{5}=0\)
Tính nhanh: \(E=\frac{4^9\times9^5+6^9\times2^6}{2^{10}\times3^8+6^8\times20}\)
\(E=\frac{4^9.9^5+6^9.2^6}{2^{10}.3^8+6^8.20}=\frac{\left(2^2\right)^9.\left(3^2\right)^5+6^9.64}{2^{10}.3^8+6^8.20}=\frac{2^{18}.3^{10}+6^9.64}{2^{10}.3^8+6^8.20}=\frac{2^8.3^2+6.2^4}{1.1+1.5}=\frac{2304+96}{6}=\frac{2400}{6}=400\)
Tính giá trị của mỗi phân số sau:
\(E=\dfrac{11\times3^{29}-\left(3^2\right)^{15}}{2\times3^{14}\times2\times3^{14}}\)
\(G=\dfrac{5\times3^{11}+4\times3^{12}}{3^9\times5^2-3^0\times2^3}\)
\(H=\dfrac{\left(3\times4\times2^{16}\right)^2}{11\times2^{13}\times4^{11}-16^9}\)
\(E=\dfrac{11.3^{29}-3^{2^{15}}}{2.3^{14}.2.3^{14}}\)
\(=\dfrac{11.3-3^{30}}{2^2}=\dfrac{33-3^{30}}{4}\)
\(A=\frac{3}{1\times1\times2\times2}+\frac{5}{2\times2\times3\times3}+...+\frac{19}{9\times9\times10\times10}\)