Giúp câu d . e . f . g . h
Ai giúp mình câu này với:
Có 8 chữ cái từ A đến H. Mỗi một trong tám chữ cái đều khác nhau
số từ 1 đến 8.
A + B + C = F + G + H = 12. D + E = 12. C + D + E + F = 26. D = 5, H = 1. A, B,
và C là các con số. Tìm giá trị của mỗi chữ cái.
A,B,C,F,G,H,D,E
Dấu . là nhân nha
Giúp em câu e,f,g,h,k ạ
\(k,=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)+5\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}+5}\\ =\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}+5\right)}{\sqrt{a}+\sqrt{b}+5}=\sqrt{a}-\sqrt{b}\)
\(h,=\dfrac{1}{2a-1}\sqrt{25a^2\left(a^2-4a+4\right)}=\dfrac{1}{2a-1}\sqrt{25a^2\left(a-2\right)^2}\\ =\dfrac{\left|5a\left(a-2\right)\right|}{2a-1}=\left[{}\begin{matrix}\dfrac{5a\left(a-2\right)}{2a-1}\left(a\ge2;a\ne\dfrac{1}{2}\right)\\\dfrac{5a\left(2-a\right)}{2a-1}\left(0\le a< 2;a\ne\dfrac{1}{2}\right)\\\dfrac{-5a\left(2-a\right)}{2a-1}\left(a< 0\right)\end{matrix}\right.\)
giúp em câu e f g h đc ko ạ
e: vecto AM=(x-3;y+1)
vecto BM=(x+1;y-2)
vecto AC=(-2;0)
vecto AM=2*vecto BM-3*vecto AC
=>x-3=2*(x+1)+6 và y+1=2(y-2)
=>x-3=2x+8 và y+1=2y-4
=>x=-11 và y=5
f: Tọa độ H là:
\(\left\{{}\begin{matrix}x=\dfrac{3-1+1}{3}=1\\y=\dfrac{-1+2-1}{3}=0\end{matrix}\right.\)
g: K thuộc Oy nên K(0;y)
vecto AB=(-4;3)
vecto AK=(-3;y+1)
A,K,B thẳng hàng
=>\(-\dfrac{3}{-4}=\dfrac{y+1}{3}\)
=>y+1=9/4
=>y=5/4
h: P thuộc Ox nên P(x;0)
vecto PA=(x-3;1)
vecto PC=(x-1;1)
ΔPAC vuông tại P
=>vecto PA*vecto PC=0
=>(x-3)(x-1)+1=0
=>x^2-4x+3+1=0
=>x=2
=>P(2;0)
cần gấp ạ câu d , e , f, g, h
d) \(x^2=a\left(a\ge0\right)\)
\(\Rightarrow x=\sqrt{a}\)
e) \(x^2=\dfrac{4}{9}\)
\(\Rightarrow x^2=\left(\pm\dfrac{2}{3}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
f) \(x^2-\dfrac{16}{25}=0\)
\(\Rightarrow x^2=\dfrac{16}{25}\)
\(\Rightarrow x^2=\left(\pm\dfrac{4}{5}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
g) \(x^2-\dfrac{7}{36}=0\)
\(\Rightarrow x^2=\dfrac{7}{36}\)
\(\Rightarrow x^2=\left(\pm\sqrt{\dfrac{7}{36}}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{7}{36}}\\x=-\sqrt{\dfrac{7}{36}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{7}}{6}\\x=-\dfrac{\sqrt{7}}{6}\end{matrix}\right.\)
h) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+1\ge1>0\forall x\)
mà \(x^2+1=0\)
nên không tìm được giá trị nào của x thoả mãn đề bài.
Giúp với : bổ túc các pứ sau:
a. A + O2→ B + C
b. B + O2→ D
c. D + E → F
d. D + BaCl2 + E→G + H
e. F+BaCl2-> G+H
f. H + AgNO3-> AgCl+ I
g. I+A-> J+ F+NO+E
h. I+ C-> J+E
k. J+ NaOH->Fe(OH)3+K
Chỉ giải hộ em câu : C , D , E , F , G , H ạ ;-; !
a: Ta có: \(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\)
\(=5\sqrt{3}+\dfrac{4}{3}\sqrt{3}+3\sqrt{6}+6\sqrt{3}\)
\(=\dfrac{37}{3}\sqrt{3}+3\sqrt{6}\)
c: Ta có: \(\left(\sqrt{12}+2\sqrt{27}\right)\cdot\dfrac{\sqrt{3}}{2}-\sqrt{150}\)
\(=\left(2\sqrt{3}+6\sqrt{3}\right)\cdot\dfrac{\sqrt{3}}{2}-5\sqrt{6}\)
\(=12-5\sqrt{6}\)
Làm giùp em bài 2 câu b, c, g, d, e, f, h
Bài 2:
d) Ta có: \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}+1+\sqrt{5}-1\)
\(=2\sqrt{5}\)
e) Ta có: \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
Câu 1: ( 3,0 điểm )
a. Xác định A, B, M, D, E, F, G, H, I, K, L và hoàn thành các phương trình hoá học sau:
1. FeS2 + O2 -> A + B
2. A + O2 -> M
3. M + D -> axit E
4. E + Cu -> F + A + D
5. A + D -> axit G
6. G + KOH -> H + D
7. H + Cu(NO3)2 -> I + K
8. I + E -> F + A + D
9. A + Cl2 + D -> E + L
b. Hòa tan một lượng oxit của kim loại R vào dung dịch H2SO4 4,9% ( vừa đủ ) thì thu được một dung dịch muối có nồng độ 5,87%. Xác định CTPT của oxit kim loạ
giúp mình câu d, e,f, h đi ạ, mình cảm ơn
\(e,=\dfrac{\left(3+\sqrt{2}\right)\left(2\sqrt{2}+1\right)}{7}-\sqrt{\dfrac{\left(\sqrt{2}+1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}\\ =\dfrac{7\sqrt{2}+7}{7}-\dfrac{\sqrt{2}+1}{1}=\sqrt{2}+1-\sqrt{2}-1=0\)
\(f,=\sqrt{\dfrac{\left(2\sqrt{3}-3\right)^2}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}}\left(2+\sqrt{3}\right)\\ =\dfrac{\left(2\sqrt{3}-3\right)\left(2+\sqrt{3}\right)}{\sqrt{3}}\\ =\dfrac{\sqrt{3}}{\sqrt{3}}=1\)
\(h,=\sqrt{\dfrac{\left(3\sqrt{5}-1\right)\left(2\sqrt{5}-3\right)}{20-9}}\left(\sqrt{2}+\sqrt{10}\right)\\ =\sqrt{\dfrac{2\left(33-11\sqrt{5}\right)}{11}}\left(\sqrt{5}+1\right)\\ =\sqrt{\dfrac{22\left(3-\sqrt{5}\right)}{11}}\left(\sqrt{5}+1\right)\\ =\sqrt{6-2\sqrt{5}}\left(\sqrt{5}+1\right)=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=4\)