Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
xin vĩnh biệt lớp 9
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2023 lúc 22:59

1:

góc AMB=1/2*sđ cung AB=90 độ

=>AM vuông góc BD

góc ACD=góc AMD=90 độ

=>ACMD nội tiếp

góc KCB+góc KMB=180 độ

=>BMKC nội tiếp

2: Xét ΔCAK vuông tại C và ΔCDB vuông tại C có

góc CAK=góc CDB

=>ΔCAK đồng dạng với ΔCDB

=>CA/CD=CK/CB

=>CA*CB=CD*CK

Thị An Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 3 2023 lúc 18:14

loading...  loading...  

Tuấn Hoàng Minh
Xem chi tiết
ling Giang nguyễn
24 tháng 3 2021 lúc 20:17

Không có mô tả.

Không có mô tả.

Không có mô tả.

Võ nguyễn anh triệu
Xem chi tiết
Võ nguyễn anh triệu
10 tháng 1 2021 lúc 21:47

Mong các bạn giúp mk cái hihi

Phạm Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2021 lúc 21:38

a) Xét (O) có 

ΔAMB nội tiếp đường tròn(A,M,B\(\in\)(O))

AB là đường kính(gt)

Do đó: ΔMAB vuông tại M(Định lí)

\(\Leftrightarrow AM\perp MB\) tại M

\(\Leftrightarrow AM\perp BD\) tại M

\(\Leftrightarrow\widehat{AMD}=90^0\)

Xét tứ giác ADMC có 

\(\widehat{AMD}=\widehat{ACD}\left(=90^0\right)\)

\(\widehat{AMD}\) và \(\widehat{ACD}\) là hai góc cùng nhìn cạnh AD

Do đó: ADMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

 

Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 4:51

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

=>BC\(\perp\)AC tại C

=>BC\(\perp\)AE tại C

=>ΔCEF vuông tại C

Xét (O) có

\(\widehat{ICB}\) là góc tạo bởi tiếp tuyến CI và dây cung CB

\(\widehat{CAB}\) là góc nội tiếp chắn cung CB

Do đó: \(\widehat{ICB}=\widehat{CAB}\)

mà \(\widehat{CAB}=\widehat{BFD}\left(=90^0-\widehat{CBA}\right)\)

nên \(\widehat{ICB}=\widehat{BFD}\)

mà \(\widehat{BFD}=\widehat{IFC}\)(hai góc đối đỉnh)

nên \(\widehat{ICB}=\widehat{IFC}\)

=>\(\widehat{ICF}=\widehat{IFC}\)

=>IC=IF

Ta có: \(\widehat{ICF}+\widehat{ICE}=\widehat{ECF}=90^0\)

\(\widehat{IFC}+\widehat{IEC}=90^0\)(ΔECF vuông tại C)

mà \(\widehat{ICF}=\widehat{IFC}\)

nên \(\widehat{ICE}=\widehat{IEC}\)

=>IC=IE

mà IC=IF

nên IE=IF

=>I là trung điểm của EF

b: Vì ΔCEF vuông tại C

nên ΔCEF nội tiếp đường tròn đường kính EF

=>ΔCEF nội tiếp (I)

Xét (I) có

IC là bán kính

OC\(\perp\)CI tại C

Do đó: OC là tiếp tuyến của (I)

Hà Phương Nhi
Xem chi tiết
Bùi Thị Bích Quyền
Xem chi tiết
Trần Minh Tuấn
Xem chi tiết
tran quang vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 22:00

a: Xét tứ giác OAPC có

góc OAP+góc OCP=180 độ

nên OAPC là tứ giác nội tiếp

b: Xét (O) có

PC,PA là tiếp tuyến

nên PA=PC

mà OC=OA

nên OP là trung trực của AC

=>OP vuông góc với AC

Xét (O) có

QC,QB là các tiếp tuyến

nên QC=QB 

mà OB=OC

nên OQ là trung trực của BC

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đo: ΔACB vuông tại C

Xét tứ giác CMON có

góc CMO=góc CNO=góc MCN=90 độ

nen CMON là hình chữ nhật

c: PA*BQ=PC*CQ=OC^2=OB*OA