GPT \(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
mấy thánh thể hiện xem nào
gpt:
\(\left(x^2-3x+2\right)\sqrt{\dfrac{x+3}{x-1}}=-\dfrac{1}{2}x^3+\dfrac{15}{2}x-11\\ \)
\(\left(x^2-3x+2\right)\sqrt{\dfrac{x+3}{x-1}}=-\dfrac{1}{2}x^3+\dfrac{15}{2}x-11\left(1\right)\)
Đk: \(\sqrt{\dfrac{x+3}{x-1}}\ge0\Leftrightarrow\left[{}\begin{matrix}x>1\\x\le-3\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-2\left(x-1\right)\left(x-2\right)\sqrt{\dfrac{x+3}{x-1}}=x^3-15x+22\)
\(\Rightarrow-2\sqrt{\left(x-1\right)\left(x+3\right)}.\left(x-2\right)=\left(x-2\right)\left(x^2+2x-11\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\-2\sqrt{\left(x-1\right)\left(x+3\right)}=x^2+2x-11\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow-2\sqrt{x^2+2x-3}=\left(x^2+2x-3\right)-8\)
Đặt \(a=\sqrt{x^2+2x-3}\left(a\ge0\right)\). Từ phương trình (2) suy ra:
\(a^2+2a-8=0\Leftrightarrow\left[{}\begin{matrix}a=2\left(nhận\right)\\a=-4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+2x-3}=2\Leftrightarrow x^2+2x-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1+2\sqrt{2}\left(nhận\right)\\x=-1-2\sqrt{2}\left(nhận\right)\end{matrix}\right.\)
Thử lại ta có \(x=2\) và \(x=-1+2\sqrt{2}\) là 2 nghiệm của phương trình (1).
\(\Leftrightarrow2\left(x^2-3x+2\right)\cdot\sqrt{\dfrac{x+3}{x-1}}=-x^3+15x-22\)
\(\Leftrightarrow2\left(x-2\right)\left(x-1\right)\cdot\dfrac{\sqrt{\left(x+3\right)\left(x-1\right)}}{x-1}=-x^3+2x^2-2x^2+4x+11x-22\)
\(\Leftrightarrow2\left(x-2\right)\sqrt{\left(x+3\right)\left(x-1\right)}=\left(x-2\right)\left(-x^2-2x+11\right)\)
\(\Leftrightarrow\left(x-2\right)\left(\sqrt{4\left(x^2+2x-3\right)}+x^2+2x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\left(1\right)\\2\sqrt{x^2+2x-3}+x^2+2x-11=0\left(2\right)\end{matrix}\right.\)
(1) =>x=2
(2): Đặt \(\sqrt{x^2+2x-3}=a\left(a>=0\right)\)
=>2a+a^2-8=0
=>(a+4)(a-2)=0
=>a=2
=>x^2+2x-3=4
=>x^2+2x-7=0
=>\(x=-1\pm2\sqrt{2}\)
vậy giúp câu này nhé mấy thánh hệ phương trình
\(\hept{\begin{cases}x+y=\sqrt[3]{2014}\\\left(\sqrt{x}+\sqrt{y}\right)\left(\frac{1}{\sqrt{x+3y}}+\frac{1}{\sqrt{y+3x}}\right)=2\end{cases}}\)
Lời Giải
Cộng theo vế 2 pt trên, ta có
3(x+1)2+2(x−1)2=83(x+1)2+2(x−1)2=8
⇔5x2+2x−3=0⇔5x2+2x−3=0
⇔⎡⎣x=35x=−1⇔[x=35x=−1
Ta viết lại pt (2)
x+5(y−1)=xyx+5(y−1)=xy
⇔(x−xy)+5(y−1)=0⇔(x−xy)+5(y−1)=0
⇔x(1−y)−5(1−y)=0⇔x(1−y)−5(1−y)=0
⇔(x−5)(1−y)=0⇔(x−5)(1−y)=0
⇔[x=5y=1⇔[x=5y=1
- TH1: Thay x = 5 vào pt (1) tìm được [y=−5+52−√y=−5−52−√[y=−5+52y=−5−52
- TH2: Thay y = 1 vào pt (1) tìm được [x=−1+52−√x=−1−52−√[x=−1+52x=−1−52
Áp dụng BĐT vào giải pt 2 dựa vào đk x,y>0; x+y=căn bậc 3 2014
suy ra dấu =
Lời Giải
{(x−1)2−2y=2(x+1)2+3y=1{(x−1)2−2y=2(x+1)2+3y=1
⇔{3(x+1)2−6y=6(1)2(x−1)2+6y=2(2)⇔{3(x+1)2−6y=6(1)2(x−1)2+6y=2(2)
Cộng theo vế 2 pt trên, ta có
3(x+1)2+2(x−1)2=83(x+1)2+2(x−1)2=8
⇔5x2+2x−3=0⇔5x2+2x−3=0
⇔⎡⎣x=35x=−1⇔[x=35x=−1
{(x+y)2=50(1)x+5(y−1)=xy(2){(x+y)2=50(1)x+5(y−1)=xy(2)
Ta viết lại pt (2)
x+5(y−1)=xyx+5(y−1)=xy
⇔(x−xy)+5(y−1)=0⇔(x−xy)+5(y−1)=0
⇔x(1−y)−5(1−y)=0⇔x(1−y)−5(1−y)=0
⇔(x−5)(1−y)=0⇔(x−5)(1−y)=0
⇔[x=5y=1⇔[x=5y=1
- TH1: Thay x = 5 vào pt (1) tìm được [y=−5+52–√y=−5−52–√[y=−5+52y=−5−52
- TH2: Thay y = 1 vào pt (1) tìm được [x=−1+52–√x=−1−52–√[x=−1+52x=−1−52
gpt: \(2\sqrt{3x+7}-5\sqrt[3]{x-6}=4\)
\(\left(x^2-3x+2\right)\left(x^2-12x+32\right)\le4x^2\)
\(\left(\sqrt{x+1}-1\right)\left(\sqrt{x^2-4x+7}+1\right)=x\)
gpt:
\(3\left(x^2-3x+1\right)+\sqrt{3\left(x^4+x^2+1\right)}=0\)
\(\sqrt[3]{x^3+5x^2}-1=\sqrt{\frac{5x^2-2}{6}}\)
Gpt \(\sqrt{1-x}\left(x-3x^2\right)=x^3-3x^2+2x+6\)
gpt : \(x^2-4x+5-\frac{3x}{x^2+x+1}=\left(x-1\right)\left(1-\frac{2\sqrt{1-x}}{\sqrt{x^2+x+1}}\right)\)
Gpt: \(5x^2+3x+6=\left(7x+1\right)\sqrt{x^2+3}\)
\(ĐK:x\in R\)
Đặt \(\sqrt{x^2+3}=t\left(t\ge0\right)\)
\(PT\Leftrightarrow2t^2-\left(7x+1\right)t+3x^2+3x=0\\ \Delta=\left(7x+1\right)^2-4\cdot2\left(3x^2+3x\right)=25x^2-10x+1=\left(5x-1\right)^2\ge0\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{7x+1-5x+1}{4}\\t=\dfrac{7x+1+5x-1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{2x+2}{4}=\dfrac{x+1}{2}\\t=\dfrac{12x}{4}=3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=\dfrac{x+1}{2}\\\sqrt{x^2+3}=3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+3=\dfrac{x^2+2x+1}{4}\\x^2+3=9x^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x^2-2x+11=0\\x^2=\dfrac{3}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\Delta=4-132< 0\\\left[{}\begin{matrix}x=\dfrac{\sqrt{6}}{4}\\x=-\dfrac{\sqrt{6}}{4}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{\sqrt{6}}{4};\dfrac{\sqrt{6}}{4}\right\}\)
GPT: \(\log_3\left(\sqrt{x^2-3x+2}+2\right)+5^{x^2-3x+1}=2\)
Đặt \(\sqrt{x^2-3x+2}=t\ge0\)
\(\Rightarrow log_3\left(t+2\right)+5^{t^2-1}-2=0\)
Nhận thấy \(t=1\) là 1 nghiệm của pt
Xét hàm \(f\left(t\right)=log_3\left(t+2\right)+5^{t^2-1}-2\)
\(f'\left(t\right)=\dfrac{1}{\left(t+2\right)ln3}+2t.5^{t^2-1}.ln5>0\) ; \(\forall t\ge0\)
\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm
\(\Rightarrow t=1\) là nghiệm duy nhất
\(\Rightarrow\sqrt{x^2-3x+2}=1\)
\(\Rightarrow...\)
GPT: \(2\left(x-3\right)\sqrt{x^3+3x^2+x+3}+2\sqrt{x+1}=2x^3-11x^2+29x-38\)