Bài 1: Tìm Q
x2y−8xy2−1,5x2y2+1+Q=−3xy2+3,5x2y−5x2y−9
p= 3xy2+2x+6 và Q=-7x+8xy2+8
Bài 3: Tính tích hai đơn thức sau và tìm bậc của đơn thức thu được :
a, 25xy2 và -1/5 xy 3
b, -5x2y 2 và 3xy2 z
c, 1 2 xy 2 và 4xyz
d, -5x2yz2 và 2x2 z
a. \(25xy^2.-\dfrac{1}{5}xy^3=-5x^2y^5\) -Bậc: 7
b.\(-5x^2y^2.3xy^2z=-15x^3y^4z\) - Bậc: 8
c.\(12xy^2.4xyz=48x^2y^3z\) - Bậc: 6
d. \(-5x^2yz^2.2x^2z=-10x^4yz^3\) ; Bậc: 8
a, \(=-5x^2y^5\)bậc 8
b, \(=-15x^3y^4z\)bậc 8
c, \(=2x^3y^3z\)bậc 7
d, \(=-10x^4yz^3\)bậc 8
Bài 1: Thực hiện phép tính
a/ 5x2y (x2y– 4xy2 + 7xy)
b/ 3xy2 (x2y3 + x 2y – xy2 )
c/ 3x(12x2 + 4x – 5) + 2x(9x2 – 6x + 7)
d/ 5x(2x2 – 9x – 5) – 9x (x2 - 7x – 4)
a/ 5x2y (x2y– 4xy2 + 7xy)
`=5x^4y^2-20x^3y^3+35x^3y^2`
b/ 3xy2 (x2y3 + x 2y – xy2 )
`=3x^3y^5+3x^3y^3-3x^2y^4`
c/ 3x(12x2 + 4x – 5) + 2x(9x2 – 6x + 7)
`=36x^3+12x^2-15x+18x^3-18x^2+14x`
`=54x^3-6x^2-x`
d/ 5x(2x2 – 9x – 5) – 9x (x2 - 7x – 4)
`=10x^3-45x^2-25x-9x^3+63x^2+36x`
`=x^3+18x^2+11x`
xếp các đơn thức sau thành từng nhóm các đơn thức đồng dạng 5x2y; 3xy2; 2/3xy2;4/3x2yz;7x2y2;-2xy2;x2y;-1/5x2y2
bn có thể ghi theo công thức toán học đc ko
\(5x^2y;x^2y\)
\(3xy^2;\dfrac{2}{3}xy^2;-2xy^2\)
\(\dfrac{4}{3}x^2yz\)
\(7x^2y^2;-\dfrac{1}{5}x^2y^2\)
- 3xy^2, 2/3xy^2, -2xy^2.
- 5x^2
- 7x^2y^2, -1/5x^2y^2.
- 4/3x^2yz.
- x^2y
d/ 4x2y2 - 8xy2 + 4y2
e/ x3y + 10x2y + 35xy
f/2x3 –4x2y+2xy2–8x
g/3x2 –9xy–6x+18y
h/ x2y2 – 3xy2 + 2xy – 6y
d) \(4x^2y^2-8xy^2+4y^2=4y^2\left(x^2-2x+1\right)=4y^2\left(x-1\right)^2\)
e) \(x^3y+10x^2y+35xy=xy\left(x^2+10x+35\right)\)
f) \(2x^3-4x^2y+2xy^2-8x=2x\left(x^2-2xy+y^2-4\right)=2x\left[\left(x-y\right)^2-4\right]=2x\left(x-y-2\right)\left(x-y+2\right)\)
g) \(3x^2-9xy-6x+18y=3x\left(x-3y\right)-6\left(x-3y\right)=3\left(x-3y\right)\left(x-2\right)\)
h) \(x^2y^2-3xy^2+2xy-6y=xy\left(xy+2\right)-3y\left(xy+2\right)=\left(xy+2\right)\left(xy-3y\right)=y\left(xy+2\right)\left(x-3\right)\)
d: \(4x^2y^2-8xy^2+4y^2\)
\(=4y^2\left(x^2-2x+1\right)\)
\(=4y^2\left(x-1\right)^2\)
e: \(x^3y+10x^2y+35xy\)
\(=xy\left(x^2+10x+35\right)\)
f: \(2x^3-4x^2y+2xy^2-8x\)
\(=2x\left(x^2-2xy+y^2-4\right)\)
\(=2x\left(x-y-2\right)\left(x-y+2\right)\)
g: \(3x^2-9xy-6x+18y\)
\(=3x\left(x-3y\right)-6\left(x-3y\right)\)
\(=3\left(x-2\right)\left(x-3y\right)\)
h: \(x^2y^2-3xy^2+2xy-6y\)
\(=xy^2\left(x-3\right)+2y\left(x-3\right)\)
\(=y\left(xy+2\right)\left(x-3\right)\)
Phân tích đa thức thành nhân tử
a/ 2x4y2– 6x2y3 - 8xy2 b/ x2 - 8x + 16
c/ 12x2 – 12 d/ 5x2y - 20xy + 20y
e/ 3x2y2 – 27y2 f/ 8x3 - 27y3
g/ 4x4 – 8x3 + 4x2 h/ 7x2y2– 28y4
giúp mình với đang cần gấp
a, 2xy^2 ( x^3 -3xy - 4 )
b, x^2 - 4x - 4x +16
= x(x-4) - 4(x-4)
= (x-4) (x-4)
Lời giải:
a.
$2x^4y^2-6x^2y^3-8xy^2=2xy^2(x^3-3xy-4)$
b.
$x^2-8x+16=x^2-2.4.x+4^2=(x-4)^2$
c.
$12x^2-12=12(x^2-1)=12(x-1)(x+1)$
d.
$5x^2y-20xy+20y=5y(x^2-4x+4)=5y(x-2)^2$
e.
$3x^2y^2-27y^2=3y^2(x^2-9)=3y^2(x-3)(x+3)$
f.
$8x^3-27y^3=(2x)^3-(3y)^3=(2x-3y)(4x^2+6xy+9y^2)$
g.
$4x^4-8x^3+4x^2=(2x^2)^2-2.2x^2.2x+(2x)^2$
$=(2x^2-2x)^2=[2x(x-1)]^2=4x^2(x-1)^2$
h.
$7x^2y^2-28y^4=7y^2(x^2-4y^2)=7y^2(x-2y)(x+2y)$
$
a/ 4x3 – xy2
b/ 5x3 – 10x2 + 5x
c/4x2 +24x+36-4y2
d/ 4x2y2 - 8xy2 + 4y2
e/ x3y + 10x2y + 35xy
f/2x3 –4x2y+2xy2–8x
g/3x2 –9xy–6x+18y
h/ x2y2 – 3xy2 + 2xy – 6y
a: \(4x^3-xy^2\)
\(=x\left(4x^2-y^2\right)\)
\(=x\left(2x-y\right)\left(2x+y\right)\)
b: \(5x^3-10x^2+5x\)
\(=5x\left(x^2-2x+1\right)\)
\(=5x\left(x-1\right)^2\)
c: \(4x^2+24x+36-4y^2\)
\(=4\left(x^2+6x+9-y^2\right)\)
\(=4\left(x+3-y\right)\left(x+3+y\right)\)
a) \(4x^3-xy^2=x\left(4x^2-y^2\right)=x\left(2x-y\right)\left(2x+y\right)\)
b) \(5x^3-10x^2+5x=5x\left(x^2-2x+1\right)=5x\left(x-1\right)^2\)
c) \(4x^2+24x+36-4y^2=\left(2x+6\right)^2-4y^2=\left(2x+6-2y\right)\left(2x+6+2y\right)\)
d) \(4x^2y^2-8xy^2+4y^2=4y^2\left(x^2-2x+1\right)=4y^2\left(x-1\right)^2\)
e) \(x^3y+10x^2y+35xy=xy\left(x^2+10x+35\right)\)
f) \(2x^3-4x^2y+2xy^2-8x=2x\left(x^2-2xy+y^2-4\right)=2x\left[\left(x-y\right)^2-4\right]=2x\left(x-y-2\right)\left(x-y+2\right)\)
g) \(3x^2-9xy-6x+18y=3x\left(x-2\right)-9y\left(x-2\right)=3\left(x-2\right)\left(x-3y\right)\)
h) \(x^2y^2-3xy^2+2xy-6y=xy\left(xy+2\right)-3y\left(xy+2\right)=\left(xy+2\right)\left(xy-3y\right)\)
g: \(3x^2-9xy-6x+18y\)
\(=3x\left(x-3y\right)-6\left(x-3y\right)\)
\(=3\left(x-2\right)\left(x-3y\right)\)
h: \(x^2y^2-3xy^2+2xy-6y\)
\(=xy^2\left(x-3\right)+2y\left(x-3\right)\)
\(=y\left(xy+2\right)\left(x-3\right)\)
Bài 1: Phân tích thành nhân tử.
a) 20x – 5y e) 4x2y – 8xy2 + 10x2y2
b) 5x(x – 1) – 3x(x – 1) g) 20x2y – 12x3
c) x(x + y) – 6x – 6y h) 8x4 + 12x2y4 – 16x3y4
d) 6x3 – 9x2 k) 4xy2 + 8xyz
a) 20x - 5y
= 5(4x - y)
b) 5x(x - 1)- 3x(x - 1)
= 2x(x - 1)
c) x(x + y) - 6x - 6y
= x(x + y) - (6x + 6y)
= x(x + y) - 6(x + y)
= (x + y)(x - 6)
d) 6x³ - 9x²
= 3x²(2x - 3)
e) 4x²y - 8xy² + 10x²y²
= 2xy(2x - 4y + 5xy)
g) 20x²y - 12x³
= 4x²(5y - 3x)
h) 8x⁴ + 12x²y⁴ - 16x³y⁴
= 4x²(2x² + 3y⁴ - 4xy⁴)
k) 4xy² + 8xyz
= 4xy(y + 2z)
Bài 1:tìm chữ số thích hợp để
a,63xy chia hết cho 3 và x-y=6
b,5x2y chia hết cho 9 và y-x=3
c,87xy chia hết cho 9 và-y=4