cho tam giác ABC cân tại A có góc A = 120 độ
a, Tính góc B và C
b, Vì Bx vuông góc vs AB; Cy vuông góc vs AC. Bx và Cy cắt nhau tại D . CM: tam giác BCD đều
cho tam giác ABC cân tại A ; góc a = 120 độ b) Tính góc B,góc C b) Vẽ Bx vuông dóc với AB và Cy vuông góc vs AC, Bx cắt Cy tại E. Chứng minh tam giác BCD đều
Cho tam giác ABC cân tại A. Có góc a bằng 100 độ, kẻ Bx vuông góc với AB tại B, Cy vuông góc với AC tại C. gọi M là giao điểm của Bx và Cy
a) Tính các góc của tam giác BMC
b) Chứng minh AM là đường trung trực của BC
a) -△ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-100^0}{2}=40^0\)
\(\Rightarrow\widehat{MBC}=\widehat{MCB}=90^0-\widehat{ABC}=90^0-40^0=50^0\)
\(\Rightarrow\widehat{BMC}=180^0-\widehat{MBC}-\widehat{MCB}=180^0-50^0-50^0=80^0\)
b) \(AB=AC\) \(\Rightarrow\)A thuộc đg trung trực của BC. (1)
\(\widehat{MBC}=\widehat{MCB}=50^0\)\(\Rightarrow\)△BMC cân tại M\(\Rightarrow BM=CM\)\(\Rightarrow\)M thuộc đg trung trực BC (2)
-Từ (1), (2) suy ra AM là đg trung trực của BC.
Cho tam giác ABC cân tại A. Có góc a bằng 100 độ, kẻ Bx vuông góc với AB tại B, Cy vuông góc với AC tại C. gọi M là giao điểm của Bx và Cy
chỉ mình v. Mình sắp thi giữa kì r
Cho tam giác ABC có AB=AC=10cm, BC= 12 . Vẽ AH vuông góc với BC tại H.
a, CMR: tam giác ABC cân
b, Chứng minh tam giác AHB = tam giác AHC. Từ đó chứng minh AH là phân giác của góc A
c, Từ H vẽ HN vuông góc với Ab và kẻ HN vuông góc với Ac. CMR : tam giác BHM = tam giác CHN
e, Tính độ dài AH
f, Từ B kẻ Bx vuông góc với AB, từ C kẻ Cy vuông góc với AC, chúng cắt nhau tại O. Tam giác OBC là tam giác gì ? Vì sao ?
a) Vì AB = AC =10cm => (đpcm)
b) Xét \(\Delta AHB\)và \(\Delta AHC\)có;
AB = AC(gt)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
AH chung
\(\Rightarrow\Delta AHB=\Delta AHC\left(c.g.c\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)(1)
\(\Rightarrow\widehat{B}=\widehat{C}\)(2 góc tương ứng)(2)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\Rightarrow\)AH là tia phân giác của \(\widehat{A}\)
c) HM với HN?
Vì \(\Delta HMB;\Delta HNC\)là tam giác vuông nên từ (1);(2) =>\(\Delta HMB=\Delta HNC\)
e)Xét \(\Delta AHC\)vuông:
Áp dụng định lí Py ta go ta có:
\(AC^2=CH^2+AH^2\)
\(12^2=6^2+AH^2\)
\(\Rightarrow AH^2=12^2-6^2=144-36=108\)
\(\Rightarrow AH=\sqrt{108}cm\)
Thông cảm nhé tối qua mình tắt mất nên nay làm tiếp:D
Vì \(\widehat{ABO}=\widehat{ACO}=90^o\)mà \(\widehat{ABC}=\widehat{ACB}=60^o\Rightarrow\widehat{BCO}=\widehat{CBO}=30^o\)
Do \(\widehat{BCO}=\widehat{CBO}=30^o\)nên \(\Delta OBC\)là tam giác cân
1. Cho tam giác ABC cân tại A có góc A = 20 độ. Vẽ D trên nửa mặt phẳng bờ AC không chứa B sao cho tam giác BCD cân tại C và góc BCD = 140 độ. Tính góc ADC
2. Cho tam giác ABC cân tại A có góc BAC = 108 độ. D là điểm nằm trong tam giác ABC sao cho góc DBC = 12 độ, góc DCB = 18 độ. tính góc ADB
3. Cho tam giác ABC cân tại A, A = 100 độ. M nằm trong tam giác ABC sao cho góc MBC = 30 độ, góc MCB = 20 độ. Tính góc MAC
4. Cho tam giác ABC vuông tại A, vẽ AH vuông góc vs BC tại. Biết BH - HC = AC. tính các góc ABC, ACB
Cho tam giác ABC cân tại A có AB = AC = 10 cm;BC = 12 cm.Kẻ AH vuông góc với BC. a) Chứng minh HB = HC;tính AH. b) kẻ Bx vuông góc với AB tại B; Cy vuông góc với AC tại C; Bx và Cy cắt nhau tại M. chứng minh AM là tia phân giác của góc BAC và suy ra A,H,M thẳng hàng. c)kẻ HK song song với MB(K thuộc MC) Trên tia HM lấy điểm O sao cho OM = 2OH. Chứng minh ba điểm B,O,K thẳng hàng
Câu c. lên lớp 8 thì em có thể dùng đường trung bình dễ hơn nhiều nhé.
Cho tam giác ABC cân tại A có góc A<90 độ , tia Bx vuông AB cắt AC tại D , tia CI vuông AC tại E . Gọi giao điểm của 2 tia Bx và CI là E . CMR :
a)AD=AE;BD=CE
b) tam giác EID cân và góc BAI = góc IAC
c) BC song song ED và AI vuông ED
d) tìm điều kiện của tam giác ABC để góc IED=30 độ
mn ơi! giúp mk với ; mk sắp phải nộp bài rồi
(Tương tự thế này nha )
Ta có : HCKˆ=HBCˆ ( cùng phụ với BKCˆ ) ( 1 )
HCBˆ+HBCˆ=900 ( 2 góc nhọn trong tam giác vuông )
BCAˆ+CBAˆ=900 ( 2 góc nhọn trong tam giác vuông )
Nên : HCBˆ+HBCˆ+BCAˆ+CBAˆ=900+900=1800
Hay : HCAˆ+HBAˆ=1800
mà : HBxˆ+HBAˆ=1800 ( hai góc kề bù )
Do đó : HCAˆ=HBxˆ(2)
mà : HBCˆ=HBxˆ ( do By là tia phân giác ) ( 3 )
Từ ( 1 ) ( 2 ) ( 3 ) Suy ra : HCKˆ=HCAˆ(đpcm)
Bài 1: Cho tam giác ABC cân tại A có góc A< 90 độ. Tia Bx vuông góc AB cắt tia AC tại D , tia Cy vuông góc AC cắt tia AB tại E . Gọi giao điểm của hai tia Bx Cy là I . Chứng minh: a) AD =AE BD= CE, b) Tam giác EID cân, góc BAI= góc CAI c) BC // ED và AI vuông góc ED , d) Tìm điều kiện của tam giác ABC sao cho góc IED =30 độ
Cho tam giác ABC cân tại A có AB = AC =10cm , BC = 12cm. Vẽ AH vuông góc BC tại H. a) Chứng minh ∆ABH = ∆ACH . b) Tính độ dài AH. c) Từ H vẽ HM vuông góc AB (M AB) , vẽ HN vuông góc AC (N AC) . Chứng minh ∆BHM = ∆CHN. d) Từ B vẽ Bx AB, từ C vẽ Cy vuông góc AC chúng cắt nhau tại O. Tam giác OBC là tam giác gì? Vì sao?
\(\text{a) Có }\Delta ABC\text{cân tại A}\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\text{Xét }\Delta AHB\text{ và }\Delta AHC\text{ có:}\)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
\(AB=AC=10cm\)\(\Rightarrow\)\( \Delta AHB\text{=}\Delta AHC\left(ch-gn\right)\)
\(\widehat{ABC}=\widehat{ACB}\)
\(\text{b) Có }\Delta AHB=\Delta AHC\Rightarrow HB=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)
\(\text{ Xét }\Delta AHB\text{vuông tại H có:}\)
\(AH^2+BH^2=AB^2\) (Định lý py-ta-go)
\(AH^2=AB^2-BH^2=10^2-6^2=100-36=64\)
\(AH=\sqrt{64}=8\left(cm\right)\)
\(\text{c) Xét }\Delta BHM\text{ và }\Delta CHN\text{ có:}\)
\(\widehat{BMH}=\widehat{CNH}=90^o\)
\(HB=HC\text{ (CMT)}\)\(\Rightarrow\)\(\text{ }\Delta BHM\text{ = }\Delta CHN \left(CH-GN\right)\)
\(\widehat{ABC}=\widehat{ACB}\)
\(\text{d) }\)\(\text{Ta có: }MH\perp AB,OB\perp AB\Rightarrow MH//OB\)
\(\Rightarrow\widehat{MHB}=\widehat{CBO}\text{ (2 góc so le trong)}\)
\(\text{Ta có: }NH\perp AC,OC\perp AC\Rightarrow NH//OC\)
\(\Rightarrow\widehat{NHC}=\widehat{BCO}\text{ (2 góc so le trong)}\)
\(\text{ }\text{Mà }\Delta BHM\text{ = }\Delta CHN\Rightarrow\widehat{MHB}=\widehat{NHC}\)
\(\text{Hay}\widehat{CBO}=\widehat{BCO}\)\(\Rightarrow\Delta OBC\text{ cân tại O}\)