Cho tam giác ABC cân tại A. Có góc a bằng 100 độ, kẻ Bx vuông góc với AB tại B, Cy vuông góc với AC tại C. gọi M là giao điểm của Bx và Cy
a) Tính các góc của tam giác BMC
b) Chứng minh AM là đường trung trực của BC
Cho tam giác ABC , vuông cân tại A . D là một điểm bất kì trên BC . Vẽ hai tia Bx và Cy cung vuông góc với BC và nằm cùng một nửa mặt phẳng chứa điểm A bờ là đường thẳng BC . Qua A vẽ một đường thẳng vuông góc với AD cắt Bx và Cy theo thứ tự M và N .
Chứng minh a, AM = ADb,
A là trung điểm MN
chứng minh mn lớn hơn hoặc bằng bc
các bạn chủ yếu làm giúp câu c ạ
cho tam giác ABC cân tại A, vẽ BH vuông góc với AC tại H, vẽ CK vuông góc với AB tại K A) chứng minh tam giác BHC bằng tam giác CKB B) chứng minh tam giác AHK cân C) chứng minh HK // BC D)gọi O là giao điểm của BH và CK, M là trung điểm của BC.Chứng minh ba điểm A,O,M thẳng hàng
Cho tam giác \(ABC\) cân tại đỉnh A. Kẻ đường cao BH vuông góc với AC tại H, và CK vuông góc với AB tại K. Biết rằng \(AB=10cm\), \(AH=6cm\). Lấy 1 điểm D bất kỳ nằm giữa B và C . Gọi E và F lần lượt là hình chiếu vuông góc của D lên đường thẳng AC và AB. Tính \(DE+DF=?\)
P/s: Đề Cương Ôn Tập hè năm 2022 của trường THCS Hoàng Liệt, quận Hoàng Mai, Hà Nội.
cho Δ ABC cân tại A (A<90o). Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E.
a) CM: ΔADE cân
b) CM: DE // BC
c) Gọi I là giao điểm của BD và CE. CM: IB=IC
d) CM: AI vuông góc với BC
Cho tam giác ABC vuông cân tại A. Gọi E là trung điểm của BC. M là điểm bất kì thuộc cạnh BC (M khác E). Kẻ BH vuông góc với AM tại H và CK vuông góc với AM tại K.
a) Chứng minh △KAC = △HBA
b) Chứng minh AE vuông góc với BC.
c) Tam giác KEH là tam giác gì? Vì sao?
Cho ∆ABC vuông tại B có góc C bằng 300. Tia phân giác của góc A cắt BC tại D. Kẻ DI vuông góc với AC (I ϵ AC).
a) Chứng minh rằng AB = AI
b) Gọi M là giao điểm của ID và AB. Chứng minh rằng DM = DC
c) Chứng minh ∆MAC đều.
d) Chứng tỏ MD = 2DI.
cho tam giác abc cân tại a. kẻ bh vuông góc với ac, ce vuông góc với ab ( d thuộc ac và e thuộc ab ). o là giao điểm của bd và ce.
a) chứng minh tam giác adb = tam giác aec.
b) chứng minh rằng tam giác boc cân.
c) chứng minh rằng ed // bc.
d) gọi m trung điểm của bc. chứng minh em = 1/2 bc