Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jenny
Cho tam giác cân ABC có AB= AC. Trên tia đối của tia BA và CA lấy hai điểm D và E sao cho BD = CE. a) C/m DE // BCH b) Từ D kẻ DM vuông góc với BC tại M, từ E kẻ EN vuông góc với BC tại N. C/m DM = EN. c) C/m tam giác AMN là tam giác cân. d) Từ B và C kẻ các đường vuông gócvới AM và AN chúng cắt nhau tại I. C/m AI là tia phân giác chung của góc BAC và góc MAN
Nguyễn Lê Phước Thịnh
2 tháng 2 2021 lúc 13:27

a) Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(1)

Ta có: AD=AB+BD(B nằm giữa A và D)

AE=AC+CE(C nằm giữa A và E)

mà AB=AC(ΔABC cân tại A)

và BD=CE(gt)

nên AD=AE

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔADE cân tại A(cmt)

nên \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{ADE}\)

mà \(\widehat{ABC}\) và \(\widehat{ADE}\) là hai góc ở vị trí đồng vị

nên BC//DE(Dấu hiệu nhận biết hai đường thẳng song song)

b) Ta có: \(\widehat{DBM}=\widehat{ABC}\)(hai góc đối đỉnh)

\(\widehat{ECN}=\widehat{ACB}\)(hai góc đối đỉnh)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{DBM}=\widehat{ECN}\)

Xét ΔDBM vuông tại M và ΔECN vuông tại N có

BD=CE(gt)

\(\widehat{DBM}=\widehat{ECN}\)(cmt)

Do đó: ΔDBM=ΔECN(cạnh huyền-góc nhọn)

nên DM=EN(hai cạnh tương ứng)

c) Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

BM=CN(ΔDBM=ΔECN)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

AB=AC(ΔABC cân tại A)

Do đó: ΔABM=ΔACN(c-g-c)

nên AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)


Các câu hỏi tương tự
van Tran
Xem chi tiết
nmtđt
Xem chi tiết
Nguyễn Việt Bách
Xem chi tiết
hung pham
Xem chi tiết
Hữu Ngọc Ánh
Xem chi tiết
Nguyễn Phương
Xem chi tiết
Bao Thy
Xem chi tiết
ANH TÚ
Xem chi tiết
Đào Minh Anh
Xem chi tiết