cho tam giác ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC
a, Chứng minh: tam giác ABE= tam giác ACD
b, CM: BE=CD
c, Gọi K là giao điểm của BE và CD. CM: tam giác KBC cân tại K
d, CM: AK là tia phân giác của góc BAC
f, Kẻ tia BX vuông góc BA tại B, tia CY vuông góc CA tại C, hai tia BX và CY cắt nhau tại I. CM: A,K,I thẳng hàng
cho tam giác ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC
a, Chứng minh: tam giác ABE= tam giác ACD
b, CM: BE=CD
c, Gọi K là giao điểm của BE và CD. CM: tam giác KBC cân tại K
d, CM: AK là tia phân giác của góc BAC
f, Kẻ tia BX vuông góc BA tại B, tia CY vuông góc CA tại C, hai tia BX và CY cắt nhau tại I. CM: A,K,I thẳng hàng
cho tam giác ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC
a, Chứng minh: tam giác ABE= tam giác ACD
b, CM: BE=CD
c, Gọi K là giao điểm của BE và CD. CM: tam giác KBC cân tại K
d, CM: AK là tia phân giác của góc BAC
f, Kẻ tia BX vuông góc BA tại B, tia CY vuông góc CA tại C, hai tia BX và CY cắt nhau tại I. CM: A,K,I thẳng hàng
Bài 1: Cho tam giác ABC cân tại A có góc A< 90 độ. Tia Bx vuông góc AB cắt tia AC tại D , tia Cy vuông góc AC cắt tia AB tại E . Gọi giao điểm của hai tia Bx Cy là I . Chứng minh: a) AD =AE BD= CE, b) Tam giác EID cân, góc BAI= góc CAI c) BC // ED và AI vuông góc ED , d) Tìm điều kiện của tam giác ABC sao cho góc IED =30 độ
Cho tam giác ABC vuông tại A, Bx là phân giác góc ABC. Bx cắt AC tại D. Từ C kẻ Cy vuông góc với AC ( AB; Cy thuộc 2 nửa mặt phẳng đối nhau bờ là AC ). Bx cắt Cy tại N. So sánh chu vi 2 tam giác ABD và CND.
Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM ?
Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?
Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB). Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE
Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?
cho tam giác ABC cân tại A [góc A nhỏ hơn 90 độ ].Kẻ BD vuông góc AC [D thuộc AC ],CE vuông góc AB [E thuộc AB ],BD và CE cắt nhau tại H.
a] chứng minh tam giác ABD = tam giác ACE
b] Chứng minh tam giác BHC cân
c] chứng minh ED song song BC
d] AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. Chứng minh tam giác ACM vuông
Cho tam giác ABC cân tại A, các đường thẳng qua B vuông góc với AB và qua C vuông góc với AC cắt nhau tại S
a) Chứng minh tam giác SBC cân
b) Trên tia đối của tia BS lấy điểm D, trên tia đối của tia CS lấy điểm E sao cho CE=BD. Chứng minh rằng DE song song BC
Bài 3: Cho tam giác ABC. Vẽ ra phía ngoài tam giác ABC các tam giác vuông cân ở A là ABD và ACE. Dựng AH vuông góc với BC, đường thẳng HA cắt DE ở K. Dựng AI vuông góc với DE, đường thẳng IA cắt BC tại M. Chứng minh rằng:
a) Tam giác AEK = Tam giác CAM
b) KD = KE
Bài 7: Cho tam giác ABC cân tại A, kẻ Bx vuông góc với BA , Cy vuông góc với CA . Bx và Cy cắt nhau tại D. Chứng minh:
tam giác ADB = tam giác ADC và AD vuông góc với BC