Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn thành Đạt
Xem chi tiết
Lê Song Phương
20 tháng 6 2023 lúc 21:37

1) Bằng phương pháp quy nạp, dễ dàng chứng minh \(1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\). Do đó, để \(1^2+2^2+...+n^2⋮̸5\) thì \(n\left(n+1\right)\left(2n+1\right)⋮̸5\). Điều này có nghĩa là \(n\equiv3\left(mod5\right)\) hoặc \(n\equiv1\left(mod5\right)\). Tóm lại, để \(1^2+2^2+...+n^2⋮̸5\) thì \(n\equiv3\left(mod5\right)\) hoặc \(n\equiv1\left(mod5\right)\).

2) Ta so sánh \(a^3-7a^2+4a-14\) với \(a^3+3\). Ta thấy \(\left(a^3-7a^2+4a-14\right)-\left(a^3+3\right)\) \(=-7a^2+4a-17=D\). dễ thấy với mọi \(a\inℤ\) thì \(D< 0\) (thực ra với mọi \(a\inℝ\) thì vẫn có \(D< 0\)) nên \(a^3-7a^2+4a-14< a^3+3\), vì vậy \(a^3-7a^2+4a-14⋮̸a^3+3\). Vậy, không tồn tại \(a\inℤ\) thỏa mãn ycbt.

Mình làm 2 bài này trước nhé.

P = 12 + 22 + 32 +...+n2 không chia hết cho 5

P = 1.(2-1) + 2.(3-1) + 3.(4-1)+...+n(n +1 - 1)

P = 1.2-1+ 2.3 - 2+ 3.4 - 3+...+ n(n+1) - n

P = 1.2 + 2.3 + 3.4+ ...+n(n+1) - (1+2+3+...+n)

P = n(n+1)(n+2):3 - (n+1)n:2

P = n(n+1){ \(\dfrac{n+2}{3}\) - \(\dfrac{1}{2}\)}

P = n(n+1)(\(\dfrac{2n+1}{6}\)) không chia hết cho 5 

⇒ n(n+1)(2n+1) không chia hết cho 5

⇒ n không chia hết cho 5

⇒ n = 5k + 1; n = 5k + 2; n = 5k + 3; n = 5k + 4

th1: n = 5k + 1 ⇒ n + 1 = 5k + 2 không chia hết cho 5  ; 2n + 1 = 10n + 3 không chia hết cho 5 vậy n = 5k + 1 (thỏa mãn)

th2: nếu n = 5k + 2 ⇒ n + 1 = 5k + 3 không chia hết cho 5;    2n + 1  = 10k + 5 ⋮ 5 (loại)

th3: nếu n = 5k + 3 ⇒  n + 1 = 5k +4 không chia hết cho 5;   2n + 1 = 10k + 7 không chia hết cho 5 (thỏa mãn)

th4 nếu n = 5k + 4 ⇒ n + 1 = 5k + 5 ⋮ 5 (loại)

Từ những lập luận trên ta có:

P không chia hết cho 5 khi 

\(\left[{}\begin{matrix}n=5k+1\\n=5k+3\end{matrix}\right.\) (n \(\in\) N)

 

 

 

Lê Song Phương
20 tháng 6 2023 lúc 21:44

3) Ta có \(P\left(n\right)=n^{1800}\left(n^{80}+n^{40}+1\right)\). Đặt \(n^{10}=a\) với \(a\inℕ\), khi đó \(P\left(a\right)=a^{180}\left(a^8+a^4+1\right)\) còn \(Q\left(a\right)=a^2+a+1\). Ta sẽ chứng minh \(a^8+a^4+1⋮a^2+a+1,\forall a\inℕ\). Thật vậy, xét hiệu:

\(D=\left(a^8+a^4+1\right)-\left(a^2+a+1\right)=a^8+a^4-a^2-a\). Phân tích D thành nhân tử, ta được:

\(D=a\left(a-1\right)\left(a^2+a+1\right)\left(a^4+a+1\right)\)\(⋮a^2+a+1\)

Từ đây suy ra được \(a^8+a^4+1⋮a^2+a+1,\forall a\inℤ\). Vậy ta có đpcm

Nhật Hạ
Xem chi tiết
Nguyễn Huy
15 tháng 8 2018 lúc 22:40

Ta có : \(n+4=n-1+\)\(5\)

Ta thấy : \(\left(n-1\right)⋮\left(n-1\right)\)

Nên \(\left(n+4\right)⋮\left(n-1\right)\Leftrightarrow5⋮\)\(\left(n-1\right)\)

\(\Leftrightarrow\left(n-1\right)\inƯ\left(5\right)=\)\((1;5)\)

N - 1     1    5
   N  2  6
nguyễn bá lương
15 tháng 8 2018 lúc 22:45

a) \(n+4⋮n-1\Rightarrow\left(n-1\right)+5⋮n-1\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)\)

\(\Rightarrow n-1\in\left\{1;5;-1;-5\right\}\Rightarrow n\in\left\{2;6;0;-4\right\}\)

b) \(n^2+2n-3=\left(n^2+n\right)+n-3=n\left(n+1\right)+n-3\)

vì \(n\left(n-1\right)⋮n-1\)\(\Rightarrow n-3⋮n+1\Rightarrow\left(n+1\right)-4⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)\)

\(\Rightarrow n-1\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow n\in\left\{2;3;5;0;-1;-3\right\}\)

Nguyễn Huy
15 tháng 8 2018 lúc 22:47

\(\left(n^2+2n-3\right)⋮\left(n+1\right)\)

\(n^2+2n-3=\)\(n^2+n+n-3\)

                          \(=n.\left(n+1\right)+n+1-4\)

Mà \(n.\left(n+1\right)⋮\left(n+1\right)\)

           \(\left(n+1\right)⋮\left(n+1\right)\)

Nên \(n^2+2n-3⋮\left(n+1\right)\) \(\Leftrightarrow4⋮\left(n+1\right)\)

                             \(\Leftrightarrow\left(n+1\right)\inƯ\left(4\right)=\)\((1;2;4)\)

n+1  1     2     4   
n  0   1   3
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
quang
Xem chi tiết
Nguyễn Đức Trí
17 tháng 9 2023 lúc 11:49

\(A=\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\)

Giải phương trình sau :

 \(\left(x-2x^2\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(1-2x\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-2x=0\\x-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\\x=2\end{matrix}\right.\)

\(\Rightarrow A=\left\{0;\dfrac{1}{2};1;2\right\}\)

\(B=\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)

Giải bất phương trình sau :

\(3< n\left(n+1\right)< 31\)

\(\Leftrightarrow\left\{{}\begin{matrix}n\left(n+1\right)>3\\n\left(n+1\right)< 31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n^2+n-3>0\\n^2+n-31< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n< \dfrac{-1-\sqrt[]{13}}{2}\cup n>\dfrac{-1+\sqrt[]{13}}{2}\\\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1-\sqrt[]{13}}{2}\\\dfrac{-1+\sqrt[]{13}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

Vậy \(B=\left(\dfrac{-1-5\sqrt[]{5}}{2};\dfrac{-1-\sqrt[]{13}}{2}\right)\cup\left(\dfrac{-1+\sqrt[]{13}}{2};\dfrac{-1+5\sqrt[]{5}}{2}\right)\)

\(\Rightarrow A\cap B=\left\{2\right\}\)

Tên mk là thiên hương yê...
Xem chi tiết
uzumaki naruto
18 tháng 8 2017 lúc 20:26

Để (n-2)(n^2 + n - 1) là số nguyên tố => (n-2) hoặc n^2 + n - 1 phải = 1 

Mà n^2 + n - 1 = n^2 + 1 +(n-2) > n+2 

=> n + 2 = 1 => n = 3

Kid TK
18 tháng 8 2017 lúc 20:30

Vì p là tích của hai số ( n - 2 )( n^2 + n - 1 )

=> p là số nguyên tố thì một trong hai số tren phải = 1 ( nếu cả hai tích số đều lớn hơn 1 => p là hợp số , trái vs đầu bài )

ta luôn có : n^2 + n - 1 = n^2 + 1 + ( n- 2 ) > ( n - 2 )

vậy => n - 2 = 1 => n = 3 => p = 11

Chúc bạn hương học giỏi nha <3 <3 <3

Cure Beauty
Xem chi tiết
Nguyễn Văn Nghĩa
7 tháng 3 2018 lúc 12:59

00000000000000000000000000000000

ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
Đoàn văn mạnh
20 tháng 10 2021 lúc 16:43

n=11