Cho ΔABC có AB=12cm,AC=18cm,BC=2,1cm.Gọi D là tr/điểm AB.Điểm E∈AC sao cho AE=4cm
a)CMinh ΔADE và ΔABC đồng dạng và tứ giác BDEC có tổng các góc đối bù nhau
b)Tính DE
1) Cho tứ giác ABCD có AB = 2,5cm, AD= 4cm , BD = 5cm, BC = 8cm, CD = 10cm. Chứng minh: ABCD là hình thang
2) Cho tam giác ABC có AB = 12cm, AC= 18cm, BC= 21cm. Gọi D là trung điểm của AB, E thuộc AB sao cho AE = 4cm
a. Chứng minh : tam giác ADE và tam giác ABC đồng dạng và tứ giác BDEC có tổng các góc đối bù nhau
b. Tính DE
Cho tam giác ABC, biết AB=4,8cm; BC=3,6cm và AC=6,4cm. Một điểm D trên cạnh AB và E trên cạnh AC, biết AD=3,2cm; AE=2,4cm
a) Chứng minh ΔADE đồng dạng ΔABC
b) Tính DE
c) Chứng minh tứ giác CBDE có các góc đối bù nhau
Cho ΔABC có AB = 8cm, AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD=2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm. a) Tính các tỉ số AC AD ; AD AE . b) Chứng minh: ΔADE đồng dạng ΔABC. c) Đường phân giác của góc BAC cắt BC tại I. Chứng minh: IB.AE = IC
Giúp mk zới các bạn ơi!¬¬¬
Câu 5: Cho ΔABC có AB = 8cm, AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm.
a. Tính các tỉ số b. Chứng minh: ΔADE đồng dạng ΔABC.
a: AD=AB-BD=6(cm)
=>AD/AB=3/4
AE/AC=9/12=3/4
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
Do đó:ΔADE\(\sim\)ΔABC
Cho ΔABC có AB = 8cm, AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm.
a) Tính các tỉ số .
b) Chứng minh: ΔADE đồng dạng ΔABC.
c) Đường phân giác của cắt BC tại I. Chứng minh: IB.AE = IC.AD.
a: AD/AB=3/4
AE/AC=3/4
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng vơi ΔABC
CÂU 5 ; cho hình ΔABC = 8cm . AC= 12cm . Trên cạnh AB lấy điểm D sao cho BD=2cm , trên cạnh AC lấy điểm E sao cho AE = 9 cm
A, tính tỉ số \(\dfrac{AE}{AD}\);\(\dfrac{AD}{AC}\)
B, chứng minh ΔADE đồng dạng ΔABC
C, đường phân giác của BAC cắt BC tại I , chứng minh : IB . AE = IC.AD
a) Ta có : AD + DB = AB ( vì D nằm trên cạnh AB)
=> AD + 2 = 8
=> AD = 6cm
Do đó : ADAB=68=34����=68=34
AEAC=912=34����=912=34
=> ADAB=AEAC=34����=����=34
b) Xét ΔADEΔ��� và ΔABCΔ��� có :
ˆA�^ chung
ADAB=AEAC����=����
=> ΔADE∽ΔABC(c.g.c)Δ���∽Δ���(�.�.�)
c) Vì IA�� là đường phân giác của ΔABCΔ��� nên
=> ABAC=IBIC=812=23����=����=812=23
Mà ADAB=AEAC����=���� (ΔADE∽ΔABC(cmt))(Δ���∽Δ���(���)) ⇒ABAC=ADAE=23⇒����=����=23
=>IBIC=ADAE⇒IB⋅AE=IC⋅AD(đpcm)����=����⇒��⋅��=��⋅��(đ���)
Cho tam giác nhọn ABC, có AB = 12cm , AC = 15 cm . Trên các cạnh
AB và AC lấy các điểm D và E sao cho AD = 4 cm, AE = 5cm
a, Chứng minh rằng: DE // BC, từ đó suy ra: Δ ADE đồng dạng với ΔABC?
b, Từ E kẻ EF // AB (F thuộc BC). Tứ giác BDEF là hình gì? Từ đó suy ra: ΔCEF đồng dạng ΔEAD?
c, Tính CF và FB khi biết BC = 18 cm
a) Ta có: \(\dfrac{AD}{AB}=\dfrac{4}{12}=\dfrac{1}{3}\)
\(\dfrac{AE}{AC}=\dfrac{5}{15}=\dfrac{1}{3}\)
Do đó: \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)\(\left(=\dfrac{1}{3}\right)\)
Xét ΔABC có
\(D\in AB\)(gt)
\(E\in AC\left(gt\right)\)
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
Do đó: DE//BC(Định lí Ta lét đảo)
\(\Leftrightarrow\text{Δ}ADE\sim\text{Δ}ABC\)(Định lí tam giác đồng dạng)
b) Xét tứ giác BDEF có
DE//BF(cmt)
BD//EF(gt)
Do đó: BDEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Cho ΔABC có AB = 5 cm, AC =7,5cm, BC =6cm. Trên AB, AC lấy điểm D,E sao cho AD= 3cm, AE =2cm
a) Chứng minh ΔADE ~ ΔACB
b) Tính DE
Cho tam giác ABC,trên tia đối của tia AB lấy điểm D sao cho AD=AB,trên tia đối của tia AC lấy điểm E sao cho AE=AC
1)Chứng minh rằng ΔADE=ΔABC và AE//BC
2)Qua A kẻ đường thẳng cắt hai đoạn thẳng BC và DE thứ tự tại M và N.Chứng minh rằng A là trung điểm của đoạn thẳng MN
1: Xét ΔADE và ΔABC có
AD=AB
\(\widehat{DAE}=\widehat{BAC}\)
AE=AC
Do đó: ΔADE=ΔABC