Cho tg ABC có ^B=^C=40o Kẻ phân giác BD,từ D kẻ DE, DF lần lượt vuông góc với AB,AC.
a) CM: BD là đường trung trực của EF
b) Trên BC lấy N sao cho BD=BN
CM: tam giác NDC cân
c)CM: BD+DA=BC
Cho tg ABC có \(\widehat{B}=\widehat{C}=40^o\) Kẻ phân giác BD,từ D kẻ DE, DF lần lượt vuông góc với AB,AC.
a) CM: BD là đường trung trực của EF
b) Trên BC lấy N sao cho BD=BN
CM: Tg NDC cân
c)CM: BD+DA=BC
cho tg ABC vuông tại A có đường phân giác BD . Kẻ DH vuông góc BC tại H . Trên tia đối của tia AB lấy K sao cho AK = CH . a) CM: tg ABD = tg HBD . b) CM: BD là đường trung trực của đoạn thẳng AH và AD<DC . c) CM: H,D,K thẳng hàng và BD vuông góc KC . d) CM: 2(AD+AK) > CK .
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
b: ta có: ΔBAD=ΔBHD
=>BA=BH và DA=DH
Ta có: BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: DA=DH
=>D nằm trên đường trung trực của AH(2)
Từ (1),(2) suy ra BD là đường trung trực của AH
Ta có: DA=DH
DH<DC
Do đó: DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
Do đó: ΔDAK=ΔDHC
=>\(\widehat{ADK}=\widehat{HDC}\)
mà \(\widehat{HDC}+\widehat{ADH}=180^0\)(hai góc kề bù)
nên \(\widehat{ADK}+\widehat{ADH}=180^0\)
=>K,D,H thẳng hàng
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH và AK=HC
nên BK=BC
=>B nằm trên đường trung trực của KC(3)
Ta có: ΔDAK=ΔDHC
=>DK=DC
=>D nằm trên đường trung trực của CK(4)
Từ (3),(4) suy ra BD là đường trung trực của CK
=>BD\(\perp\)CK
Cho tam giác ABC cân tại A trên BC lấy D, trên tia đối của CB lấy E sao cho BD=CE. Từ D kẻ đường vuông góc với BC cắt AB tại M, từ E kẻ đường vuông góc với BC cắt AC tại N
a) CM MD=NE
b) Cho MN cắt DE tại I. CM I là trung điểm cua DE
c) Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB, chúng cắt nhau tại O. CM AO là đường trung trực của BC
a)Vì tam giác abc cân ở a =>góc abc=góc acb.mà góc acb =góc ecn (đối đỉnh) =>góc abc=góc ecn.
Xét tam giác bmd và tam giác cne có :bd=ce; góc abc=góc ecn =>tam giác bmd =tam giác ecn(cạnh góc vuông và góc nhọn kề)
=>md=ne.
b)Vì dm và en cung vuông góc với bc =>dm song song với en=>góc dmc=góc enc(so le trong)
xét tam giác dim và tam giác ein có :góc dmc =góc enc;góc mid=góc nie(đối đỉnh);góc mdi=góc nei=90 độ=>tam giác dim=tam giác ein(g.g.g.)
=>di=ie=>i là trung điểm de
c)gọi h là giao của ao với bc.
ta có:xét tam giác abo bằng tam giác aco=>bo=co=>o thuộc trung trực của bc .tương tự a thuộc trung trực của bc=>ao là trung trực bc
Cho tam giác ABC ( A^ = 90 độ ) , BD là tia phân giác của góc B ( D thuộc AC ). Trên tia BC lấy điểm E sao cho BA= BE.
a) CM : DE vuông góc BE.
b) CM : BD là đường trung trực của AE.
c) Kẻ AH vuông góc BC . So sánh EH và EC.
cho tam giác abc có ab<ac trung tuyến am từ b và c lần lượt kẻ bd và ce vuông góc với am tại d và e
a)cm bd=ce
b)đường thẳng qua m và vuông góc với bc cắt đường thẳng ac tại k cm tam giác kbc cân
c)cm bk<ac
a: Xét ΔBDM vuông tại D và ΔCEM vuông tại E có
MB=MC
góc BMD=góc CME
=>ΔBDM=ΔCEM
=>BD=CE
b: Xét ΔKBC có
KM vừa là đường cao, vừa là trung tuyến
=>ΔKBC cân tại K
c: KB=KC
mà KC<AC
nên KB<AC
Cho tam giác ABC (A=90 độ ). BD là tia phân giác của góc B (D thuộc AC) . Trên tia BC lấy điểm E sao cho BA=BE .
a) CM tam giác BAD = BED => DE Vuông góc BE
b) CM BD là đường trung trực của AE
c) Kẻ AH vuông góc BC . So sánh EH và EC
a) Xét tam giác BAD và tam giác BED có :
BA = BE ( gt )
^ABD = ^EBD ( BD là tia phân giác của ^B )
BD chung
=> Tam giác BAD = tam giác BED ( c.g.c )
=> AD = ED ( hai cạnh tương ứng )
=> ^BDA = ^BDE ( hai góc tương ứng )
mà ^BDA + ^BDE = 1800 ( kề bù )
=> ^BDA = ^BDE = 1800/2 = 900
=> BD vuông góc với AE ( đpcm )
b) BD vuông góc với AE
=> D thuộc AE
Lại có AD = ED
=> BD là đường trung trực của AE
Giải
a) Xét 2 tam giác BAD và tam giác BED có:
BD là cạnh chung
BA = BE ( gt )
Góc ABD = góc EBD ( gt )
Do đó : Tam giác BAD = tam giác BED (c.g.c )
=> góc BAD = góc BED ( hai cạnh tương ứng )
=> BED = 90° => DE vuông góc với BE
b) Theo câu a ta có : Tam giác BAD = tam giác BED => DA = DE nên D thuộc đừng trung trực của AE
Mà BA = BE ( gt ) nên B thuộc đừng trung trực của AE
Vậy BD là đường trung trực của AE
Học tốt
ĐÂY LÀ PHẦN C Ạ
c) Ta có : tam giác AHE vuông tại H nên ta có AEH là góc nhọn => AEC là góc tù => AHE < AEC => AE < AC ( quan hệ cạnh và góc đối diện )
Mà EH là hình chiếu của AE trên BC
HC là hình chiếu AC trên BC => EH < AC
HỌC TỐT Ạ
Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD của tam giác ABC, trên Bc lấy E sao cho BE=BA. a) CM: Tam giác ABD = tam giác EBD và ED vuông góc với BC b) Gọi F là giao điểm của AB và và DE. CM: tam giác BFC cân c) Cho BD cắt FC tại N, trên tia đối NB lấy M sao cho NM=ND. CM: FM // CD. d) Tính chu vi tam giác ABC , biết AB/AC= 3/4 ; BC=15 cm CẦN GẤP :)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
a) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay ED\(\perp\)BC(Đpcm)
b) Ta có: ΔABD=ΔEBD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)+A(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: AF=EC(hai cạnh tương ứng)
Ta có: BA+AF=BF(A nằm giữa B và F)
BE+EC=BC(E nằm giữa B và C)
mà BA=BE(gt)
và AF=EC(cmt)
nên BF=BC
Xét ΔBFC có BF=BC(cmt)
nên ΔBFC cân tại B(Định nghĩa tam giác cân)
Tam giác ABC cân tại A. Trên tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.Từ D kẻ đường vuông góc với BC cắt AB ở M. Từ E kẻ đường vuông góc với BC cắt AC ở N.
a) CM: MD=NE
b) MN cắt DE ở I,CM: I là trung điểm của DE
c) Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB chúng cắt nhau tại O.CM: AO là đường trung trực của BC
a, xét tam giác MDB và tam giác NEC có:
BD=CE(gt)
vì \(\widehat{B}\)=\(\widehat{ACB}\)mà\(\widehat{ACB}\)=\(\widehat{ECN}\)nên\(\widehat{B}\)=\(\widehat{ECN}\)
\(\Rightarrow\)tam giác MDB=tam giác NEC(CH-GN)
\(\Rightarrow\)MD=NE