Cho ΔABC vuông tại A. Lấy M, N là điểm bất kì trên AB, Ac. So sánh độ dài các đoạn thẳng MB, MC, BC
Cho tam giác ABC vuông tại A. Lấy M,N là các điểm bất kì trên AB,AC. So sánh độ dài các đoạn thẳng NB,MN,BC
Vì ˆCMBCMB^ là góc ngoài của tam giác AMC, nên:
ˆCMB=ˆCAB+ˆMCA=90độ+ˆMCACMB^=CAB^+MCA^=90độ+MCA^
⇒ˆCMB⇒CMB^ là góc tù
Mà trong tam giác, cạch đối diện với góc vuông hoặc góc tù là cạnh lớn nhất
⇒{BC>MCBC>MB⇒{BC>MCBC>MB (BC là cạnh đối diên góc CMB) (đpcm)
Chúc bn học tốt!!!
Cho tam giác ABC vuông tại A.Lấy các điểm M,N bất kì trên AB,AC.So sánh độ dài các đoạn thẳng MP,MC,BC
Cho đoạn thẳng AB. Gọi d là đg trung trực của AB . Trên đg thẳng d lấy điểm M bất kì . Trong mặt phẳng lấy điểm C sao cho BC <CA
a) So sánh MB + MC với CA
b) TÌm vị trí của M trên d sao cho MB + MC nhỏ nhất
M thuộc d nên MA = MB. Vậy MB + MC = MA + MC. Trong tam giác MAC, ta có : MA + MC > AC. Vậy MB + MC > AC
Vì CB < CA nên C và B nằm trong cùng một nửa mặt phẳng bờ d. Do đó A và C nằm trong hai nửa mặt phẳng bờ d khác nhau. Do đó d cắt AC tại H.
Vậy khi M ≡≡ H thì : MB + MC = HB + HC = HA + HC
=> MB + MC = AC
Vậy ta có MB + MC ≥ AC
Khi M trùng với H thì HB + HC = AC.
Tức là MB + MC nhỏ nhất khi M ≡≡ H giao điểm của AC với d
Cho đoạn thẳng AB, gọi d là đường trung trực của AB, trên d lấy điểm M bất kì
a) So sánh MB+MC và CA
b) Tìm M trên d sao cho MB + MC bé nhất. Biết C là 1 điểm bất kì sao cho CB<CA
M thuộc d nên MA = MB. Vậy MB + MC = MA + MC. Trong tam giác MAC, ta có : MA + MC > AC. Vậy MB + MC > AC
Vì CB < CA nên C và B nằm trong cùng một nửa mặt phẳng bờ d. Do đó A và C nằm trong hai nửa mặt phẳng bờ d khác nhau. Do đó d cắt AC tại H.
Vậy khi M ≡≡ H thì : MB + MC = HB + HC = HA + HC
=> MB + MC = AC
Vậy ta có MB + MC ≥ AC
Khi M trùng với H thì HB + HC = AC.
Tức là MB + MC nhỏ nhất khi M ≡≡ H giao điểm của AC với d
cho đoạn thẳng AB gọi d là đương trung trực của AB trên đường thẳng d lấy điểm M bất kì trong mặt phẳng lấy C sao cho BC<Ca
so sánh MB +MC với CA
tìm vị trí của M trên d sao cho MB +MC nhỏ nhất
M thuộc d nên MA = MB. Vậy MB + MC = MA + MC. Trong tam giác MAC, ta có : MA + MC > AC. Vậy MB + MC > AC
Vì CB < CA nên C và B nằm trong cùng một nửa mặt phẳng bờ d. Do đó A và C nằm trong hai nửa mặt phẳng bờ d khác nhau. Do đó d cắt AC tại H.
Vậy khi M ≡≡ H thì : MB + MC = HB + HC = HA + HC
=> MB + MC = AC
Vậy ta có MB + MC ≥ AC
Khi M trùng với H thì HB + HC = AC.
Tức là MB + MC nhỏ nhất khi M ≡≡ H giao điểm của AC với d.
Cho tam giác ABC vuông tại A (AB>AC) Trên cạnh AB lấy điểm H bất kì (H khác A và B) Gọi I là đường chiếu của H lên CB. Đường thẳng HI cắt CA tại D
a) CMR ΔABC đồng dạng Δ IBH
b)Cho AC=3cm, BC= 5cm, AH= 1cm. Gọi M là trung điểm của HB. Tính độ dài các đoạn thẳng AB, IB và IM
c) Gọi K là giao điểm của CH và BD. CMR: BH.BA+CH.CK Không đổi khi H di chuyển trên cạnh AB.
d)CMR: =1
a:Xet ΔABC vuông tại A và ΔIBH vuông tại I có
góc B chung
=>ΔABC đồng dạng với ΔIBH
b: \(BA=\sqrt{5^2-3^2}=4\left(cm\right)\)
HB=4-1=3cm
=>HM=MB=1,5cm
ΔABC đồng dạngvơi ΔIBH
=>AB/IB=BC/BH=AC/IH
=>4/IB=5/3=3/IH
=>IB=4:5/3=12/5cm và IH=3:5/3=9/5cm
trên đường thẳng xy , lấy các điểm A,B,C theo thứ tự đó sao cho AB = 6cm, AC= 8cm.
a, tính độ dài đoạn thẳng BC.
b, gọi M là trung điểm đoạn thẳng AB. so sánh MC và AB.
c, trên tia MB lấy điểm N sao cho MN= 4cm. chứng tỏ rằng điểm N là trung điểm của đoạn thẳng BC.
a,BC=2cm
b,AB>MC
c,BC:2=1cm,MC=3cm,3+1=4.Vậy:N là trung điểm của đoạn thẳng BC
cám ơn bạn nhé. bạn có thể ghi rõ cho mình cahcs giải thích phần b, và c, đc không ?
Cho tam giác ABC vuông tại A có \(\widehat B > {45^o}\)
a) So sánh các cạnh của tam giác
b) Lấy điểm K bất kì thuộc đoạn thẳng AC. So sánh độ dài BK và BC.
Tham khảo:
a) Vì tam giác ABC vuông tại A nên \(\widehat{A}=90^0; \widehat{B}+\widehat{C}=90^0\)
Vì \(\widehat B > {45^o} \Rightarrow \widehat C < {45^o} \Rightarrow \widehat A > \widehat B > \widehat C \Rightarrow BC > AC > AB\)
b) Vì \(\widehat {BKC}\) là góc ngoài tại đỉnh K của tam giác ABK nên \(\widehat {BKC}>(\widehat {BAK}=90^0\)
Xét tam giác BCK, ta có :
\(\widehat {BKC} > {90^o} > \widehat {BCK}\)
\( \Rightarrow BC > BK\) ( quan hệ giữa góc và cạnh đối diện trong tam giác)
Cho tam giác ABC vuông tại A có góc B = 40 độ. Từ điểm D là trung điểm của BC vẽ đường thẳng vuông góc với Bc tại D cắt dường thẳng AB tại M.
a) So sánh các cạnh của tam giác ABC
b) Chứng minh điểm M thuộc đoạn AB
c) So sánh MB với AC và MC với BC