Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Bình
Xem chi tiết
Nguyệt Trâm Anh
4 tháng 11 2016 lúc 20:46
a)AC=EB và AC//BEem chứng minh tam giác AMC = tam giác EMB (c.g.c)=> AC = EB và góc CAM = góc BEM mà 2 góc này ở vị trí so le trong nên AC//BEb) Chứng minh ba điểm I,M,K thẳng hàng.em chứng minh IC = BK, góc ACM = góc EBM( suy ra từ câu a)khi đó tam giác IMC = tam giác KMB (c.g.c)=> góc IMC = góc KMBkhi đó góc IMK = 180 độI, M, K thẳng hàng
Nguyệt Trâm Anh
16 tháng 11 2016 lúc 21:25

Má sao ko ai tick vậy

Duong Thi Nhuong
23 tháng 11 2016 lúc 7:57

a) Xét tam giác AMC và tam giác BME có :
AM = ME (gt)
BM = MC (gt)
(2 góc đối đỉnh)



(cặp cạnh tương ứng);

(cặp góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong do cát tuyến AE cắt \Rightarrow AC // BE.

b) Ta có : (cặp góc tương ứng)

Lại có :


Vậy I,M,K thẳng hàng.

Nhan Nguyen thị
Xem chi tiết
Chí Phan
Xem chi tiết
Tokyo Ghoul
17 tháng 12 2017 lúc 11:36

A B C M E K I Câu trả lời mình gửi sau:

Diệu Lan Anh
31 tháng 10 2021 lúc 20:11

k biết

 

Nguyễn Tiến Minh
Xem chi tiết
Pham thi thu ngan
Xem chi tiết
H9ô H
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 7:42

b: Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

H9ô H
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 7:47

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

Nguyễn Hoàng Minh
11 tháng 12 2021 lúc 7:49

\(a,\left\{{}\begin{matrix}AM=ME\\BM=MC\\\widehat{AMC}=\widehat{BME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta EMB\left(c.g.c\right)\\ b,\left\{{}\begin{matrix}AM=ME\\BM=MC\\\widehat{AMB}=\widehat{CME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\\ \Rightarrow\widehat{MAB}=\widehat{MEC}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}EC\\ c,\left\{{}\begin{matrix}\widehat{MAI}=\widehat{MEK}\\AM=ME\\KE=AI\end{matrix}\right.\Rightarrow\Delta AMI=\Delta EMK\left(c.g.c\right)\\ \Rightarrow\widehat{AMI}=\widehat{EMK}\\ \text{Mà 2 góc này ở vị trí đối đỉnh và }A,M,E\text{ thẳng hàng nên }I,M,K\text{ thẳng hàng}\)

Pham thi thu ngan
Xem chi tiết
Pham thi thu ngan
Xem chi tiết