b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
\(a,\left\{{}\begin{matrix}AM=ME\\BM=MC\\\widehat{AMC}=\widehat{BME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta EMB\left(c.g.c\right)\\ b,\left\{{}\begin{matrix}AM=ME\\BM=MC\\\widehat{AMB}=\widehat{CME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\\ \Rightarrow\widehat{MAB}=\widehat{MEC}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}EC\\ c,\left\{{}\begin{matrix}\widehat{MAI}=\widehat{MEK}\\AM=ME\\KE=AI\end{matrix}\right.\Rightarrow\Delta AMI=\Delta EMK\left(c.g.c\right)\\ \Rightarrow\widehat{AMI}=\widehat{EMK}\\ \text{Mà 2 góc này ở vị trí đối đỉnh và }A,M,E\text{ thẳng hàng nên }I,M,K\text{ thẳng hàng}\)