Cho A= x(x-4/9) Tìm x để
a/ A=0
b/ A>0
c/ A<0
a,x(16-x)=0
b,x(x+2)-x-2=0
c,\(x^2-9=0\)
a) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
b) \(\Rightarrow x\left(x+2\right)-\left(x+2\right)=0\Rightarrow\left(x+2\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
c) \(\Rightarrow\left(x-3\right)\left(x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
a)x=0 hoặc 16-x=0
x=0 hoặc x=16
Vậy \(x\in\left\{0;16\right\}\)
b)(x-1)(x+2)=0
x=1 hoặc x=-2
Vậy \(x\in\left\{1;-2\right\}\)
c)\(x^2=9\)
\(x=\pm3\)
Vậy \(x\in\left\{3;-3\right\}\)
Tìm x biết:
a) 7x.(2x - 3) - (4x2 - 9) = 0
b) (2x - 7).(x - 2).(x2 - 4) = 0
c) (9x2 - 25) - (6x - 10) = 0
a) \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\Rightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\Rightarrow\left(2x-3\right)\left(7x-2x+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-3=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
b) \(\left(2x-7\right).\left(x-2\right)\left(x^2-4\right)=0\Rightarrow\left(2x-7\right)\left(x-2\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}2x-7=0\\\left(x-2\right)^2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)
c)\(\left(9x^2-25\right)-\left(6x-10\right)=0\Rightarrow\left(3x-5\right)\left(3x+5\right)-2\left(3x-5\right)=0\Rightarrow\left(3x-5\right)\left(3x+5-2\right)=0\Rightarrow\left[{}\begin{matrix}3x-5=0\\3x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=1\end{matrix}\right.\)
a: Ta có: \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\)
\(\Leftrightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
b: Ta có: \(\left(2x-7\right)\left(x-2\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)^2\cdot\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)
c: Ta có: \(\left(9x^2-25\right)-\left(6x-10\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+5-2\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)
với giá trị nào của x thì biểu thức sau \(\sqrt{\dfrac{2x}{3}}\) không có nghĩa :
A. x ≤ 0
B. x ≥ 0
C. x < 0
D. x > 0
phương trình \(\sqrt{x}\)=a vô nghiệm với
A. a = 0
B. a < 0
C. a > 0
D. mọi a
Tìm x biết :
a) 4x³ - 36x = 0
b) ( x-2)² - 4x +8= 0
c) x³ + (x+3)×(x-9) = -27
a) \(4x^3-36x=0\)
\(\Leftrightarrow4x\left(x^2-9\right)=0\)
\(\Leftrightarrow4x\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x+3=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=3\end{matrix}\right.\)
b) \(\left(x-2\right)^2-4x+8=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(4x-8\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
c) \(x^3+\left(x+3\right)\left(x-9\right)=-27\)
\(\Leftrightarrow\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
a) 4x – 20 = 0
b) 2x + x + 12 = 0
c) x – 5 = 3 – x
d) 7 – 3x = 9 – x
a) 4x – 20 = 0
⇔ 4x = 20
⇔ x = 20 : 4
⇔ x = 5
Vậy phương trình có nghiệm duy nhất x = 5.
b) 2x + x + 12 = 0
⇔ 3x + 12 = 0
⇔ 3x = -12
⇔ x = -12 : 3
⇔ x = -4
Vậy phương trình đã cho có nghiệm duy nhất x = -4
c) x – 5 = 3 – x
⇔ x + x = 5 + 3
⇔ 2x = 8
⇔ x = 8 : 2
⇔ x = 4
Vậy phương trình có nghiệm duy nhất x = 4
d) 7 – 3x = 9 – x
⇔ 7 – 9 = 3x – x
⇔ -2 = 2x
⇔ -2 : 2 = x
⇔ -1 = x
⇔ x = -1
Vậy phương trình có nghiệm duy nhất x = -1.
Em lớp 6 em chỉ làm dc phần a,b,c
Kết quả như sau:
a,4x-20=0
4x=20+0
4x=20
x=20:4
x=5
Bài 2: giải phương trình sau
a) \(X^4\)-\(x^2\)-2=0
b) (x+1)\(^4\)-x\(^2\)+2)\(^2\)=0
c)3x\(^2\)-2x-8=0
Bài 3: giải phương trình sau
a) x\(^3\)-0,25=0
b) x\(^4\)+2x\(^3\)+x\(^2\)=0
c) x\(^3\)-1=0
d) 6x\(^2\)-7x+2=0
Mong có người giải giùm xin kẻm ơn :>
Bài 3:
b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)
hay \(x\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
=>x-1=0
hay x=1
d: \(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
a) |x - 2| + |y + 3| = 0
b) |x - 2| - |x + 3| = 0
c) |x - 3/4| + |x + 5/4| = 1a: =>x-2=0 và y+3=0
=>x=2 và y=-3
b: =>|x-2|=|x+3|
=>x-2=x+3 hoặc x+3=2-x
=>2x=-1
=>x=-1/2
c: TH1: x<-5/4
Pt sẽ là -x-5/4+3/4-x=1
=>-2x-1/2=1
=>-2x=3/2
=>x=-3/4(loại)
TH2: -5/4<=x<3/4
Pt sẽ là x+5/4+3/4-x=1
=>8/4=1(loại)
TH3: x>=3/4
Pt sẽ là x-3/4+x+5/4=1
=>2x+1/2=1
=>2x=1/2
=>x=1/4(loại)
a)15x^2 -3x=0
b)(3x -2)(x +3)+(x^2 -9)=0
c)(x -1)^3 -(x +1)(2 -3x)=0
a: \(\Leftrightarrow3x\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{5}\end{matrix}\right.\)
a, ( x + 1 )2 - 4( x + 2)2 = 0
b, ( x + 2 )2 + x2 - 4 = 0
c, x + √x - 12 = 0
\(a,\Leftrightarrow\left(x+1-2x-4\right)\left(x+1+2x+4\right)=0\\ \Leftrightarrow\left(-x-3\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{5}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)^2+\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x+2+x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ c,ĐK:x\ge0\\ PT\Leftrightarrow x-3\sqrt{x}+4\sqrt{x}-12=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)=0\\ \Leftrightarrow\sqrt{x}=3\left(\sqrt{x}+4>0\right)\\ \Leftrightarrow x=9\left(tm\right)\)
Tìm x biết:
a) (2x - 3).(x + 5) = 0
b) 3x.(x - 2) - 7.(x - 2) = 0
c) 5x.(2x - 3) - 6x + 9 = 0
a)(2x-3)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy x=3/2 hoặc x=-5
a) \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)
b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)
c) \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)
a: Ta có: \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
b: Ta có: \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{3}\end{matrix}\right.\)
c: Ta có: \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)