Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hai Hien
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 13:49

a: ta có: \(\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)

\(\Leftrightarrow2x^2+4x-5x-10-2x^2+2x=15\)

\(\Leftrightarrow x=25\)

b: Ta có: \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow4x^2-25+\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5+2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)

c: Ta có: \(x\left(4x-5\right)-\left(2x+1\right)^2=0\)

\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)

\(\Leftrightarrow-9x=1\)

hay \(x=-\dfrac{1}{9}\)

quang08
31 tháng 8 2021 lúc 14:17

a: ta có: (2x−5)(x+2)−2x(x−1)=15

⇔2x2+4x−5x−10−2x2+2x=15

⇔x=25

b: Ta có: (5−2x)(2x+7)=4x2−25

⇔4x2−25+(2x−5)(2x+7)=0

Tư Linh
Xem chi tiết
Shinichi Kudo
14 tháng 3 2022 lúc 20:16

rút gọn à banj

Tư Linh
14 tháng 3 2022 lúc 20:28

đúng rồi á

Nguyễn Minh Hoàng
Xem chi tiết
Ngọc Trinh Hồ Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2022 lúc 7:53

a: (3x-2)(4x+5)=0

=>3x-2=0 hoặc 4x+5=0

=>x=2/3 hoặc x=-5/4

b: (2,3x-6,9)(0,1x+2)=0

=>2,3x-6,9=0 hoặc 0,1x+2=0

=>x=3 hoặc x=-20

c: =>(x-3)(2x+5)=0

=>x-3=0 hoặc 2x+5=0

=>x=3 hoặc x=-5/2

Nguyeexn Thành Luân
Xem chi tiết
Lấp La Lấp Lánh
5 tháng 10 2021 lúc 18:48

\(\left(4x-5\right)\left(2x+30\right)-4\left(x+2\right)\left(2x-1\right)+\left(10x+7\right)\)

\(=8x^2+110x-150-8x^2-12x+8+10x+7\)

\(=108x-135\)

Phí Đức
5 tháng 10 2021 lúc 18:49

$(4x-5)(2x+30)-4(x+2)(2x-1)+(10x+7)\\=4x(2x+30)-5(2x+30)-4[x(2x-1)+2(2x-1)]+10x+7\\=8x^2+120x-10x-150-4[2x^2-x+4x-2]+10x+7\\=8x^2+120x-143-4[2x^2+3x-2]\\=8x^2+120x-143-8x^2-12x+8\\=108x-135$

Hoàng Bắc Nguyệt
Xem chi tiết
Trương Huy Hoàng
14 tháng 12 2020 lúc 22:59

a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))

Vì hai vế ko âm, bp 2 vế ta được:

2x2 - 3 = 4x - 3

\(\Leftrightarrow\) 2x2 = 4x

\(\Leftrightarrow\) x2 = 2x

\(\Leftrightarrow\) x2 - 2x = 0

\(\Leftrightarrow\) x(x - 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy S = {2}

b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)

Vì hai vế ko âm, bp 2 vế ta được:

2x - 1 = x - 1

\(\Leftrightarrow\) x = 0 (KTM)

Vậy x = \(\varnothing\)

c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x - 6 = x - 3

\(\Leftrightarrow\) x2 - 2x - 3 = 0

\(\Leftrightarrow\) x2 - 3x + x - 3 = 0

\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 1) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)

Vậy S = {3}

d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x = 3x - 5

\(\Leftrightarrow\) x2 - 4x + 5 = 0

\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0

\(\Leftrightarrow\) (x - 2)2 + 1 = 0

Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)

\(\Rightarrow\) Pt vô nghiệm

Vậy S = \(\varnothing\)

Chúc bn học tốt!

Hoàng Bắc Nguyệt
14 tháng 12 2020 lúc 22:40

Nguyễn Lê Phước Thịnh nhờ anh xíu ạ

Nguyên Đình
Xem chi tiết
Toru
22 tháng 10 2023 lúc 11:06

\(a,(x-2)^2-25=0\\\Leftrightarrow (x-2)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

\(---\)

\(b,4x(x-2)+x-2=0\\\Leftrightarrow4x(x-2)+(x-2)=0\\\Leftrightarrow(x-2)(4x+1)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{4}\end{matrix}\right.\)

\(---\)

\(c,4x(x-2)-x(3+4x)(?)\)

\(d,(2x-5)^2-3x(5-2x)=0\\\Leftrightarrow(2x-5)^2+3x(2x-5)=0\\\Leftrightarrow(2x-5)(2x-5+3x)=0\\\Leftrightarrow(2x-5)(5x-5)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\5x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=1\end{matrix}\right.\)

\(---\)

\(e,x^2-25-(x+5)=0(sửa.đề)\\\Leftrightarrow(x^2-5^2)-(x+5)=0\\\Leftrightarrow (x-5)(x+5)-(x+5)=0\\\Leftrightarrow(x+5)(x-5-1)=0\\\Leftrightarrow(x+5)(x-6)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)

\(---\)

\(f,5x(x-3)-x+3=0\\\Leftrightarrow5x(x-3)-(x-3)=0\\\Leftrightarrow(x-3)(5x-1)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

\(Toru\)

Trần Nam Khánh
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 8 2021 lúc 19:14

\(\left(x^2+2x\right)^2-2x^2-4x-3=0\Leftrightarrow x^4+4x^3+4x^2-2x^2-4x-3=0\Leftrightarrow x^4+4x^3+2x^2-4x-3=0\Leftrightarrow\left(x-1\right)\left(x+1\right)^2\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 20:58

Ta có: \(\left(x^2+2x\right)^2-2x^2-4x-3=0\)

\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\\x=1\end{matrix}\right.\)

Như Dương
Xem chi tiết
Hồng Phúc
31 tháng 8 2021 lúc 8:57

a, ĐK: \(x\ge2\)

\(\sqrt{2x+1}-\sqrt{x-2}=x+3\)

\(\Leftrightarrow\dfrac{x+3}{\sqrt{2x+1}+\sqrt{x-2}}=x+3\)

\(\Leftrightarrow\left(x+3\right)\left(\dfrac{1}{\sqrt{2x+1}+\sqrt{x-2}}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\sqrt{2x+1}+\sqrt{x-2}=1\left(vn\right)\end{matrix}\right.\)

Phương trình vô nghiệm.

 

Hồng Phúc
31 tháng 8 2021 lúc 9:02

b, ĐK: \(x\ge-1\)

\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)

\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{\left(x+3\right)\left(x+1\right)}\)

\(\Leftrightarrow-\sqrt{x+3}\left(\sqrt{x+1}-1\right)+2x\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

Hồng Phúc
31 tháng 8 2021 lúc 9:13

c, ĐK: \(x\ge-3\)

\(2\sqrt{x+3}=9x^2-x-4\)

\(\Leftrightarrow x+3+2\sqrt{x+3}+1=9x^2\)

\(\Leftrightarrow\left(\sqrt{x+3}+1\right)^2=9x^2\)

\(\Leftrightarrow\left(\sqrt{x+3}+1-3x\right)\left(\sqrt{x+3}+1+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=3x-1\\\sqrt{x+3}=-3x-1\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}3x-1\ge0\\x+3=9x^2-6x+1\end{matrix}\right.\Leftrightarrow...\)

TH2: \(\left\{{}\begin{matrix}-3x-1\ge0\\x+3=9x^2+6x+1\end{matrix}\right.\Leftrightarrow...\)

Tự giải nha, t kh có máy tính ở đây.