cho tam giác ABC. cmr:3S\(\ge\)2R2(sin3A+sin3B+sin3C)
Cho tam giác ABC nhọn, p là nửa chu vi, S là diện tích
CMR: \(\cot A+\cot B+\cot C\ge\frac{p^2}{3S}\)
\(cotA+cotB+cotC\ge\frac{p^2}{3S}\)
<=> \(cotA.S+cotB.S+cotC.S\ge\frac{p^2}{3}\)
MÀ \(S=\frac{1}{2}ab.sinC=\frac{1}{2}bc.SinA=\frac{1}{2}ac.SinB\)
=> \(\frac{1}{2}bc.cosA+\frac{1}{2}ab.cosC+\frac{1}{2}ac.cosC\ge\frac{p^2}{3}\)
Áp dụng công thức hàm cos ta có \(cosA=\frac{b^2+c^2-a^2}{2bc};cosB=\frac{a^2+c^2-b^2}{2ac};cosC=\frac{b^2+a^2-c^2}{2ab}\)
ĐPCM
<=> \(\frac{1}{4}\left(a^2+b^2-c^2\right)+\frac{1}{4}\left(b^2+c^2-a^2\right)+\frac{1}{4}\left(a^2+c^2-b^2\right)\ge\frac{\left(\frac{a+b+c}{2}\right)^2}{3}\)
<=> \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> ĐPCM
Dấu bằng xảy ra khi a=b=c => Tam giác ABC đều
Vậy \(cotA+cotB+cotC\ge\frac{p^2}{3S}\)
Gọi AH,BK,CL là 3 đường cao của \(\Delta\)ABC. Khi đó:
\(\cot B=\frac{BH}{HA},\cot C=\frac{CH}{HA}\) suy ra \(\cot B+\cot C=\frac{BC}{HA}\)
Chứng minh tương tự rồi cộng theo vế ta được:
\(2\left(\cot A+\cot B+\cot C\right)=\frac{BC}{HA}+\frac{CA}{KB}+\frac{AB}{LC}\)
\(=\frac{BC^2}{2S}+\frac{CA^2}{2S}+\frac{AB^2}{2S}\ge\frac{\left(BC+CA+AB\right)^2}{6S}=\frac{2p^2}{3S}\)(BĐT Schwartz)
Do đó \(\cot A+\cot B+\cot C\ge\frac{p^2}{3S}\)(đpcm).
Dấu "=" xảy ra khi và chỉ khi tam giác ABC là tam giác đều.
Cho tam giác ABC có diện tích S, bán kính đường tròn ngoại tiếp là R thỏa mãn \(3S=2R^2\left(sin^3A+sin^3B+sin^3C\right)\)
CMR: tam giác ABC đều.
Cho tam giác nhọn ABC, Â = 300. Hai đường cao BH và CK
CMR: SAHK = 3SBCHK
bài này khó quá với lại ít người học lớp 9
TG ABH ~ TG ACK (g.g) \(\Rightarrow\frac{AH}{AK}=\frac{AB}{AC}\Rightarrow\frac{AH}{AB}=\frac{AK}{AC}\Rightarrow\)TG AHK ~ TG ABC(c.g.c)
\(\Rightarrow\frac{S_{AHK}}{S_{ABC}}=\left(\frac{AH}{AB}\right)^2=\cos^2A\Rightarrow S_{AHK}=S_{ABC}.\cos^2A\)\(=S_{ABC}.\left(\frac{\sqrt{3}}{2}\right)^2=\frac{3}{4}S_{ABC}\left(1\right)\)
\(S_{BCHK}=S_{ABC}-S_{AHK}=S_{ABC}-\frac{3}{4}S_{ABC}=\frac{1}{4}S_{ABC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\)SAHK=3SBCHK
Cho tam giác abc nhọn có hai đương trung tuyến ad và be. trên tia đối của tia da lấy điểm , sao cho ad=dm. trên tia đối của tia eb lấy điểm n sao cho eb=en. Trên tia đối của tia cb lấy điểm p sao cho bc=cp
A. Cmr cm//ab và m,c,n thẳng hàng
B. Cmr c là trọng tâm tam giác amp . C. Gọi F là giao điểm của ap và mn. Cmr af=fp. D. Cmr S tam giác amp= 3S tam giác abc
Cho tam giác ABC có diện tích S, bán kính đường tròn ngoại tiếp là R thỏa mãn \(3S=2R^2\left(sin^3A+sin^3B+sin^3C\right)\).
CMR: tám giác ABC đều.
cho tam giác abc vuông tại a đường cao ah.
a. Cho ac=6, bc=20. tính ah,bh
b. gọi m là hình chiếu của H lên ab. chứng minh am.ab=hb.hc
c. gọi k là hình chiêu của H lên ac. chứng minh bm+ck=bc(cos3b+ sin3b)
Mình cần cách giải hoặc lời giải chi tiết (nếu được) của câu c ạ. mình cảm ơn. không hình cũng được ạ.
c: Xét ΔAHB vuông tại H có \(cosB=\dfrac{BH}{BA}\)
Xét ΔHMB vuông tại M có \(cosB=\dfrac{MB}{BH}\)
Xét ΔABC vuông tại A có \(\left\{{}\begin{matrix}cosB=\dfrac{BA}{BC}\\cosC=\dfrac{AC}{BC}\end{matrix}\right.\)
Xét ΔCKH vuông tại K có \(cosC=\dfrac{CK}{CH}\)
Xét ΔCHA vuông tại H có \(cosC=\dfrac{CH}{CA}\)
\(cos^3C=cosC\cdot cosC\cdot cosC\)
\(=\dfrac{CA}{CB}\cdot\dfrac{CK}{CH}\cdot\dfrac{CH}{CA}=\dfrac{CK}{CB}\)
=>\(CK=CB\cdot cos^3C\)
\(cos^3B=cosB\cdot cosB\cdot cosB\)
\(=\dfrac{BH}{BA}\cdot\dfrac{MB}{BH}\cdot\dfrac{BA}{BC}=\dfrac{MB}{BC}\)
=>\(MB=BC\cdot cos^3B\)
\(BM+CK\)
\(=BC\cdot cos^3B+BC\cdot cos^3C\)
\(=BC\left(cos^3B+cos^3C\right)\)
Cho tam giác ABC , các đường cao không nhỏ hơn 1 . CMR: \(S_{ABC}\ge\frac{\sqrt{3}}{3}\)
Cho tam giác ABC . CMR:
\(\cot A+\cot B+\cot C\ge\sqrt{3}\)
Giúp với, mình đang cần gấp:
Bài 1: cho (O;R), cát tuyến MAB, tiếp tuyến MT .CMR: MA+MB\(\ge\)2MT
Bài 2: Tam giác ABC, trên AB và AC về phía ngoài tam giác dựng 2 hình vuông ABDE và ACMN CMR: Trung tuyến A của tam giác AEN kéo dài là đường cao tam giác ABC