Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Minh Quân
Xem chi tiết
Trần Phúc Khang
24 tháng 7 2019 lúc 12:17

\(cotA+cotB+cotC\ge\frac{p^2}{3S}\)

<=> \(cotA.S+cotB.S+cotC.S\ge\frac{p^2}{3}\)

MÀ \(S=\frac{1}{2}ab.sinC=\frac{1}{2}bc.SinA=\frac{1}{2}ac.SinB\)

=> \(\frac{1}{2}bc.cosA+\frac{1}{2}ab.cosC+\frac{1}{2}ac.cosC\ge\frac{p^2}{3}\)

Áp dụng công thức hàm cos ta có \(cosA=\frac{b^2+c^2-a^2}{2bc};cosB=\frac{a^2+c^2-b^2}{2ac};cosC=\frac{b^2+a^2-c^2}{2ab}\)

ĐPCM

<=> \(\frac{1}{4}\left(a^2+b^2-c^2\right)+\frac{1}{4}\left(b^2+c^2-a^2\right)+\frac{1}{4}\left(a^2+c^2-b^2\right)\ge\frac{\left(\frac{a+b+c}{2}\right)^2}{3}\)

<=> \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)

<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng 

=> ĐPCM

Dấu bằng xảy ra khi a=b=c  => Tam giác ABC đều 

Vậy \(cotA+cotB+cotC\ge\frac{p^2}{3S}\)

Nguyễn Tất Đạt
24 tháng 7 2019 lúc 12:29

A B C H K L

Gọi AH,BK,CL là 3 đường cao của \(\Delta\)ABC. Khi đó:

\(\cot B=\frac{BH}{HA},\cot C=\frac{CH}{HA}\) suy ra \(\cot B+\cot C=\frac{BC}{HA}\)

Chứng minh tương tự rồi cộng theo vế ta được: 

\(2\left(\cot A+\cot B+\cot C\right)=\frac{BC}{HA}+\frac{CA}{KB}+\frac{AB}{LC}\)

\(=\frac{BC^2}{2S}+\frac{CA^2}{2S}+\frac{AB^2}{2S}\ge\frac{\left(BC+CA+AB\right)^2}{6S}=\frac{2p^2}{3S}\)(BĐT Schwartz)

Do đó \(\cot A+\cot B+\cot C\ge\frac{p^2}{3S}\)(đpcm).

Dấu "=" xảy ra khi và chỉ khi tam giác ABC là tam giác đều.

Đức Lộc Bùi
Xem chi tiết
Nguyễn Thành Công
Xem chi tiết
pham kim han
7 tháng 6 2015 lúc 6:11

bài này khó quá với lại ít người học lớp 9

Nguyễn Thành Công
7 tháng 6 2015 lúc 14:28

TG ABH ~ TG ACK (g.g) \(\Rightarrow\frac{AH}{AK}=\frac{AB}{AC}\Rightarrow\frac{AH}{AB}=\frac{AK}{AC}\Rightarrow\)TG AHK ~ TG ABC(c.g.c)

\(\Rightarrow\frac{S_{AHK}}{S_{ABC}}=\left(\frac{AH}{AB}\right)^2=\cos^2A\Rightarrow S_{AHK}=S_{ABC}.\cos^2A\)\(=S_{ABC}.\left(\frac{\sqrt{3}}{2}\right)^2=\frac{3}{4}S_{ABC}\left(1\right)\)

\(S_{BCHK}=S_{ABC}-S_{AHK}=S_{ABC}-\frac{3}{4}S_{ABC}=\frac{1}{4}S_{ABC}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\)SAHK=3SBCHK

 

Cậu bé ngu ngơ
Xem chi tiết
Đức Lộc Bùi
Xem chi tiết
Nguyễn Ngọc Thuỳ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 19:58

c: Xét ΔAHB vuông tại H có \(cosB=\dfrac{BH}{BA}\)

Xét ΔHMB vuông tại M có \(cosB=\dfrac{MB}{BH}\)

Xét ΔABC vuông tại A có \(\left\{{}\begin{matrix}cosB=\dfrac{BA}{BC}\\cosC=\dfrac{AC}{BC}\end{matrix}\right.\)

Xét ΔCKH vuông tại K có \(cosC=\dfrac{CK}{CH}\)

Xét ΔCHA vuông tại H có \(cosC=\dfrac{CH}{CA}\)

\(cos^3C=cosC\cdot cosC\cdot cosC\)

\(=\dfrac{CA}{CB}\cdot\dfrac{CK}{CH}\cdot\dfrac{CH}{CA}=\dfrac{CK}{CB}\)

=>\(CK=CB\cdot cos^3C\)

\(cos^3B=cosB\cdot cosB\cdot cosB\)

\(=\dfrac{BH}{BA}\cdot\dfrac{MB}{BH}\cdot\dfrac{BA}{BC}=\dfrac{MB}{BC}\)

=>\(MB=BC\cdot cos^3B\)

\(BM+CK\)

\(=BC\cdot cos^3B+BC\cdot cos^3C\)

\(=BC\left(cos^3B+cos^3C\right)\)

chi chăm chỉ
Xem chi tiết
chi chăm chỉ
Xem chi tiết
Trần Điền
Xem chi tiết