Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vuong nguyen
Xem chi tiết
tth_new
29 tháng 1 2019 lúc 8:49

Tớ sẽ chứng minh đề sai:

\(\hept{\begin{cases}x+y=1\\xy=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=1\\2xy=2\end{cases}}\Rightarrow x^2+4xy+y^2=3\) (Cộng theo vế)

Thay xy = 1 vào: \(x^2+y^2+4=3\Leftrightarrow x^2+y^2=-1\)

Mà \(x^2;y^2\ge0\forall x;y\)

Vậy tính A "=" niềm tin à? vì không có gì x,y nào thỏa mãn để tính cả!

toi la toi toi la toi
Xem chi tiết
Ashley
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 23:19

A>=1/(1+xy)=1/2

Dấu = xảy ra khi x=y=1

Nguyễn Mạnh Hùng
Xem chi tiết
Lê Song Phương
2 tháng 12 2023 lúc 21:04

Ta có \(x^2+y^2+xy+x=y-1\)

\(\Leftrightarrow2x^2+2y^2+2xy+2x-2y+2=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

\(\Rightarrow B=\left(-1+1-1\right)^{2023}\) \(=\left(-1\right)^{2023}\) \(=-1\)

Phí Anh Quân
2 tháng 12 2023 lúc 20:46

bvbbbvvbvv

Nguyễn Ngọc Minh
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2022 lúc 21:32

\(P=\dfrac{x^2+y^2+6}{x+y}=\dfrac{x^2+y^2+2xy+4}{x+y}=\dfrac{\left(x+y\right)^2+4}{x+y}=x+y+\dfrac{4}{x+y}\)

\(P\ge2\sqrt{\left(x+y\right).\dfrac{4}{x+y}}=4\)

\(P_{min}=4\) khi \(x=y=1\)

Xem chi tiết
Nguyễn Linh Chi
11 tháng 5 2020 lúc 23:03

Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy=9-2=7\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.3=18\)

=> \(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=7.18-1.3=123\)

Khách vãng lai đã xóa
Hoài Thu Vũ
Xem chi tiết
Akai Haruma
29 tháng 5 2023 lúc 17:10

Lời giải:

$xy+\sqrt{(1+x^2)(1+y^2)}=1$

$\Leftrightarrow \sqrt{(1+x^2)(1+y^2)}=1-xy$

$\Rightarrow (1+x^2)(1+y^2)=(1-xy)^2$ (bp 2 vế)

$\Leftrightarrow x^2+y^2=-2xy$

$\Leftrightarrow (x+y)^2=0\Leftrightarrow x=-y$.

Khi đó:

$M=(x+\sqrt{1+(-x)^2})(-x+\sqrt{1+x^2})=(\sqrt{1+x^2}+x)(\sqrt{1+x^2}-x)$

$=1+x^2-x^2=1$

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 8 2021 lúc 22:04

\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)

Đặt \(\dfrac{x}{y}=a\Rightarrow0< a\le\dfrac{1}{4}\)

\(P=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{2x}{y}+2}{\dfrac{x}{y}+1}=\dfrac{a^2-2a+2}{a+1}=\dfrac{4a^2-8a+8}{4\left(a+1\right)}=\dfrac{4a^2-13a+3+5\left(a+1\right)}{4\left(a+1\right)}\)

\(P=\dfrac{5}{4}+\dfrac{\left(1-4a\right)\left(3-a\right)}{4\left(a+1\right)}\ge\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(a=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

Kiệt Võ
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 4 2021 lúc 20:04

\(x\ge xy+1\Rightarrow1\ge y+\dfrac{1}{x}\ge2\sqrt{\dfrac{y}{x}}\Rightarrow\dfrac{y}{x}\le\dfrac{1}{4}\)

\(Q^2=\dfrac{x^2+2xy+y^2}{3x^2-xy+y^2}=\dfrac{\left(\dfrac{y}{x}\right)^2+2\left(\dfrac{y}{x}\right)+1}{\left(\dfrac{y}{x}\right)^2-\dfrac{y}{x}+3}\)

Đặt \(\dfrac{y}{x}=t\le\dfrac{1}{4}\) 

\(Q^2=\dfrac{t^2+2t+1}{t^2-t+3}=\dfrac{t^2+2t+1}{t^2-t+3}-\dfrac{5}{9}+\dfrac{5}{9}\)

\(Q^2=\dfrac{\left(4t-1\right)\left(t+6\right)}{9\left(t^2-t+3\right)}+\dfrac{5}{9}\le\dfrac{5}{9}\)

\(\Rightarrow Q_{max}=\dfrac{\sqrt{5}}{3}\) khi \(t=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(2;\dfrac{1}{2}\right)\)