Tìm x và y biết
X3 + y3 = 4028( x2 - xy+ y2 ) và x - y =2
1 .cho x + y = 2 và x2 + y2 = 16 . Tính x3 + y3
2. cho x + y = 8 và xy = -20 . Tính x2 + y2 ; x3 + y3 ; và x2 + xy + y2
giúp ạ , cảm cơn
1)
Ta có: x+y=2
nên \(\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy=2\)
hay xy=1
Ta có: \(x^3+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=2^3-3\cdot1\cdot2\)
=2
2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)
\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Cho M = x 3 + y 3 và N=(x+y) x 2 - x y - y 2 . Khi x = - 4;y = - 2 hãy so sánh M và N.
A. M<N
B. M=N
C. M>N
D. M≠N
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) x2 + y2 ≥ (x + y)2/2
b) x3 + y3 ≥ (x + y)3/4
c) x4 + y4 ≥ (x + y)4/8
d) x2 + y2 + z2 ≥ xy + yz + zx
e) x2 + y2 + z2 ≥ (x + y + z)2/3
f) x3 + y3 + z3 ≥ 3xyz
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
Tìm x
(x-5)2=(3+2x)2
27x3-54x2+36x=9
cho bt x-y=4 và xy=1 tính giá trị của các biểu thức A=x2+y2,B=x3-y3,C=x4+y4
a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)
\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)
\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)
b) \(27x^3-54x^2+36x=9\)
\(\Rightarrow27x^3-54x^2+36x-9=0\)
\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)
\(\Rightarrow\left(3x-2\right)^3-1=0\)
\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)
mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)
\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)
(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}
27\(x^3\) - 54\(x^2\) + 36\(x\) = 9
27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1
(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1
Tìm x
(x-5)^2=(3+2x)^2
27x^3-54x^2+36x=9
cho bt x-y=4 và xy=1 tính giá trị của các biểu thức A=x2+y2,B=x3-y3,C=x4+y4
(x - 5)² = (3 + 2x)²
(x - 5)² - (3 + 2x)² = 0
[(x - 5) - (3 + 2x)][(x - 5) + (3 + 2x)] = 0
(x - 5 - 3 - 2x)(x - 5 + 3 + 2x) = 0
(-x - 8)(3x - 2) = 0
-x - 8 = 0 hoặc 3x - 2 = 0
*) -x - 8 = 0
-x = 8
x = -8
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy x = -8; x = 2/3
--------------------
27x³ - 54x² + 36x = 9
27x³ - 54x² + 36x - 9 = 0
27x³ - 27x² - 27x² + 27x + 9x - 9 = 0
(27x³ - 27x²) - (27x² - 27x) + (9x - 9) = 0
27x²(x - 1) - 27x(x - 1) + 9(x - 1) = 0
(x - 1)(27x² - 27x + 9) = 0
x - 1 = 0 hoặc 27x² - 27x + 9 = 0
*) x - 1 = 0
x = 1
*) 27x² - 27x + 9 = 0
Ta có:
27x² - 27x + 9
= 27(x² - x + 1/3)
= 27(x² - 2.x.1/2 + 1/4 + 1/12)
= 27[(x - 1/2)² + 1/12] > 0 với mọi x ∈ R
⇒ 27x² - 27x + 9 = 0 (vô lí)
Vậy x = 1
A = x² + y²
= x² - 2xy + y² + 2xy
= (x - y)² + 2xy
= 4² + 2.1
= 16 + 2
= 18
B = x³ - y³
= (x - y)(x² + xy + y²)
= (x - y)(x² - 2xy + y² + xy + 2xy)
= (x - y)[(x - y)² + 3xy]
= 4.(4² + 3.1)
= 4.(16 + 3)
= 4.19
= 76
C = x⁴ + y⁴
= (x²)² + (y²)²
= (x²)² + 2x²y² + (y²)² - 2x²y²
= (x² + y²)² - 2x²y²
= (x² - 2x²y² + y² + 2x²y²)² - 2x²y²
= [(x - y)² + 2x²y²]² - 2x²y²
= (4² + 2.1²)² - 2.1²
= (16 + 2)² - 2
= 18² - 2
= 324 - 2
= 322
a: =>(2x+3)^2-(x-5)^2=0
=>(2x+3+x-5)(2x+3-x+5)=0
=>(x+8)(3x-2)=0
=>x=2/3 hoặc x=-8
b: =>27x^3-54x^2-36x-9=0
=>3x^3-6x^2-4x-1=0
=>\(x\simeq2,57\)
c: A=x^2+y^2=(x-y)^2+2xy=4^2+2=18
B=x^3-y^3=(x-y)^3+3xy(x-y)
=4^3+3*1*4
=64+12=76
C=(x^2+y^2)^2-2x^2y^2
=18^2-2*1^2=322
bài 1:. So sánh: 200920 và 2009200910
bài 2:
Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
bài 3: Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
bài 4:Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
ko khó đâu :))
Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10
2009200910 = (10001.2009)10
Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10
Vậy 200920 < 2009200910
Bai 3:
Theo giả thiết suy ra các tích x1x2 , x2x3 , ...., xnx1 chỉ nhận một trong hai giá trị là 1 và -1
Do đó x1x2 + x2x3 +...+ xnx1 = 0 <=> n = 2m
=> Đồng thời có m số hạng bằng 1 và m số hạng bằng -1
Nhận thấy : (x1x2)(x2x3)...(xnx1) = x12x22...xn2 = 1
=> Số các số hạng bằng -1 phải là số chẵn
=> m = 2k
Suy ra n = 2m = 2.2k = 4k
=> n chia hết cho 4
bai 2:
25−y²=8(x−2009)
⇒25−y²=8x−16072
⇒8x=25−y²−16072
⇒8x=25−16072−y²
⇒8x=−16047−y²
8×−16047−y²8=−16047−y²
⇒−16047−y²=−16047−y²
⇒y có vô giá trị nhé (y∈R)
Vậy
a)cho x+y=3 và x2+y2=5.Tính x3+y3
b)x-y=5 và x2+y2=15.Tính x3-y3
a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)
b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)
\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)
chứng minh rằng: 1x+1y≤−2 biết x3+y3+3(x2+y2)+4(x+y)+4=0 và xy>0
CMR: \(\frac{1}{x}+\frac{1}{y}\le2\) biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0
Tìm x,y,z biết : x2 =y3 =z4 và x2−y2 2z^2=108