tính M=3A-2B/C+D + 3B-2C/D+A + 3C-2D/A-B + 3D-2A/B+C
AI GIẢI CHI TIẾT BÀI NÀY GIÙM MÌNH VỚI
cho a/b=c/d. CMR:
a,5a-3b/3a+2b=5c-3d/3c+2d
b,2a+7b/a-2b=2c+d/c-2d
c,ac/bd=(ac)mũ 2/(bd)mũ 2
d,2a mũ 2+3c mũ 2/3b mũ 2+3d mũ 2=5a mũ 2-2c mũ 2/2b mũ 2- 2d mũ 2
cho ti le thuc a/b = c/d ,chung to rang a,3a + 2b / a = 3c + 2d / c ; b, 2a - 3b/ b = 2c - 3d / b ; c, a/ a-2b = c/c-2d giup minh voi dang can gap
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)
\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)
Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)
b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)
\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)
Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)
c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)
\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)
Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)
Cho a/b=c/d.Chứng minh;
a)a-b/2a=c-d/2c
b)5a-3b/3a+2b=5c-3d/3c+2d
a )\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{2a}{2c}\)
\(\frac{a-b}{c-d}=\frac{2a}{2c}\Rightarrow\frac{a-b}{2a}=\frac{c-d}{2c}\) ( đpcm)
b ) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)
\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\) ( đpcm )
cho a,b,c,d>0, ctìm gtnn của (a+2a/3b)(1+2b/3c)(1+2c/3d)(1+2d/3a)
cho a,b,c thỏa mãn:
\(\frac{2b+b-c}{a}=\frac{2c-b+a}{b}=\frac{2a-b-c}{c}\)
Tính \(A=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Nhớ giải chi tiết giùm
cho a,b,c,d>0, chứng minh rằng (a+2a/3b)(1+2b/3c)(1+2c/3d)(1+2d/3a)>=625/81
Cho tỉ lệ thức : a/b = c/d chứng minh rằng :
a) A - B /2a = C - D / 2c ; A + B / B = C+ D /D
b) 5a - 3b / 3a+2b = 5c - 3d / 3c+2d
Cho a, b, c, d > 0. CMR \(\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\ge\dfrac{2}{3}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)
\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)
\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)
*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)
Rút gọn biểu thức:
E=(-a-b+c+d)-(d+c-b-2a)
F=(a-2b-c+2d)-(3d-2c-3b+a)+15
G=a(2b-c)-b(a+c)-a(c+b)
H=(a+3b)(c-d)-(3a-d)(b+c)-2c(b-a)+2b(a+d)
help me!!!!!!!!!!!!!!!!!!!!!!
mình đang gấp giúp mình với
GIẢI ĐẦY ĐỦ NHA
ai làm đúng đầy đủ mình cho 1 tick
E=(-a-b+c+d)-(d+c-b-2a)
E=-a-b+c+d-d-c+b+2a
E=-a+(-)b+c+d+(-d)+(-c)+b+2a
E=-a+(-b)+c+d+(-d)+(-c)+b+2a
E=(2a-a)+(-b+b)+(-d+d)+(-c+c)=a+0+0+0=a
F=(a-2b-c-2d)-(3d-2c-3b+a)+15
F=a-2b-c-2d-3d+2c+3b-a+15
F=a+(-2b)+(-c)+(-2d)+(-3d)+2c+3b+(-a)+15
F=(-2b+3b)+(-c+2c)+[-2d+(-3d)]+(-a+a)+15
F=b+c+(-5d)+0+15=b+c+(-5d)+15