cho tam giác ABC vuông tại A. Biết BC= 20cm và 4AB= 3AC. tính độ dài các cạnh còn lại.
Cho tam giác ABC vuông tại A. Biết BC = 20 cm và 4AB = 3AC. Tính độ dài cạnh AB, AC
Cho tam giác ABC vuông tại A biết BC=20cm và 4AB=3AC. Tính AB,AC
\(\Delta ABC\)vuông tại \(A\Leftrightarrow AB^2+AC^2=BC^2=400\)
\(4AB=3AC\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\Leftrightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{400}{25}=16\)
\(\Rightarrow\hept{\begin{cases}AB^2=9.16=144\Leftrightarrow AB=12\\AC^2=16.16\Leftrightarrow AC=16\end{cases}}\)
Cho tam giác ABC vuông tại A biết BC=20cm và 4AB=3AC. Tính AB và AC
\(4AB=3AC\Rightarrow\frac{AB}{3}=\frac{AC}{4}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và định lý pytago ta có:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{BC^2}{25}=\frac{400}{25}=16\)
\(\Rightarrow\frac{AB^2}{9}=16\Rightarrow AB^2=144\Rightarrow AB=12\left(cm\right)\)
\(\frac{AC^2}{16}=16\Rightarrow AC^2=16^2\Rightarrow AC=16\left(cm\right)\)
Cho tam giác ABC vuông tại A biết BC=20cm và 4AB=3AC. Tính AB và AC
Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A,ta có:
BC2=AB2+CA2
<=>400=AB2+CA2
Theo giả thiết: 4AB=3AC
=>AB3=AC4
=>AB29=AC216
Theo tính chất dãy tỉ số bằng nhau,ta có:
AB29=AC216=AB2+AC29+16=BC225=40025=16
Với AB29=16=>AB=12
Với AC216=16=>AC=16
Vậy AB=12cm
AC=16cm
🤬★๖ۣۜ V ๖ۣۜ★•™❄(TEAM★BTS)❄•🧨 chép mạng nhớ ghi nguồn
ta có tam giác ABC vuông tại A => \(AB^2+AC^2=BC^2=20^2=400\) (1)
lại có 4AB = 3AC hay \(AB=\frac{3}{4}AC\)
thế \(AB=\frac{3}{4}AC\)vào (1) ta được:
\(\left(\frac{3}{4}AC\right)^2+AC^2=400\)
\(\frac{9}{16}AC^2+AC^2=400\)
\(\frac{25}{16}AC^2=400\)
\(AC^2=256\)
\(\orbr{\begin{cases}AC=\sqrt{256}=16\\AC=-\sqrt{256}=-16\left(loai\right)\end{cases}}\)
Vậy AC = 16 (cm)
=> AB = \(\frac{3}{4}AC=\frac{3}{4}.16=12\)(cm)
Cho tam giác vuông tại A. Biết BC=20cm; 4AB=3AC. Tính AB; AC
Do tam giác ABC là tam giác vuông nên theo định lý Pytago có: BC^2=AB^2+AC^2(1). Mà theo gt 4AB=3AC=>AC=4AB/3 (2). Thay vao (1), ta co BC^2=AB^2+(4AB/3)^2<=>20^2=(25(AB^2))/9 <=> AB=12. Thay AB vao (2) =>AC=16.
cho mình hỏi, 25 trong cái vế bạn thay vào ở đâu z
Tính các góc và các cạnh còn lại của tam giác ABC vuông tại A , biết :
BC = 20cm , góc B = 40 độ
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=50^0\)
Xét ΔABC vuông tại A có
\(AB=BC\cdot\sin\widehat{C}\)
\(\Leftrightarrow AB=20\cdot\sin50^0\)
hay \(AB\simeq15,32\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=20^2-15.32^2=165.2976\)
hay \(AC\simeq12,86\left(cm\right)\)
Tính các góc và các cạnh còn lại của tam giác ABC vuông tại A , biết :
BC = 20cm , góc B = 40 độ
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=50^0\)
Xét ΔABC vuông tại A có
\(AB=BC\cdot\sin\widehat{C}\)
\(=20\cdot\sin50^0\)
hay \(AB\simeq15,32\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=20^2-15.32^2=165,2976\)
hay \(AC\simeq12,86\left(cm\right)\)
cho tam giác ABC vuông tại A.Tính cạnh BC nếu biết :,AB/3=AC/4 và AB+AC=14
b,4AB=3AC và AB+AC=70
c,AB/AC=4/3 và 4AB+3AC=25căn bậc 2
cho tam gác ABC vuông tại A đường cao AH , biết BC= 20cm ,AB= 12cm . Tính các độ dài còn lại
Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(AC^2=BC^2-AB^2=400-144=256\Rightarrow AC=16\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=9,6\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{144}{20}=7,2\)cm
=> CH = BC - BH = 20 - 7,2 = 12,8 cm
BH=HC=10cm
Vì BC : 2 = 10
Vì là tam giác cân nên AB=AC=12cm
Đường cao AH tự tính nha tui tính ra 2căn11