4)D = √√2-1₁ √2-√3-√2. √2+√3-√2
Chứng minh rằng:
a,A=1/2+1/2^2+1/2^3+.+1/2^2<1
b,B=1/3+1/3^2+1/3^3+...+1/3^n<1/2
c,B=1/2-1/2^2+1/2^3-1/2^4+...+1/2^2015-1/2^2016<1/3
d,D=1/3+2/3^2+3/3^3+4/3^4+...+100/3^100<3/4
?reeeeeeeeeeee
Ủa, cái số gì đây??????
1/tính nhanh
D=1^2+2^2+3^2+.......+1999^2
2/tính nhanh
a,A=1*3+2*4+3*5+....+99*101
b,B=1*4+2*5+3*6+4*7+.......+99*102
c,C=2^2+4^2+6^2+......+98^2+100^2
d,D=1*2^2+2*3^2+3*4^2+......+98.99^2
A. 1 - b, 2 - a, 3 - d, 4 - c.
B. 1 - b, 2 - d, 3 - a, 4 - c.
C. 1 - c, 2 - a, 3 - d, 4 - b.
D. 1 - c, 2 - b, 3 - d, 4 - a.
C=1/2^2+1/3^2+1/4^2+...+1/19^2+1/20^2
CM C <3/4
D=1/2^2+1/3^2+1/4^2+...+1/100^2
CM D<1
a,(3/7+1/2)2 b, (3/4-5/6)2 c,54.204 /255.45 d,(-105/3).(-64/5)
e,(1+2/3-1/4).(4/5-3/4)2 f 2:(1/2-2/3)3
a) \(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2=\left(\dfrac{6}{14}+\dfrac{7}{14}\right)^2=\left(\dfrac{13}{14}\right)^2=\dfrac{169}{196}\)
b) \(\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2=\left(\dfrac{9}{12}-\dfrac{10}{12}\right)^2=\left(-\dfrac{1}{12}\right)^2=\dfrac{1}{144}\)
c) \(\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot2^8}{5^{10}\cdot2^{10}}=\dfrac{1}{100}\)
d) \(\left(\dfrac{-10^5}{3}\right)\cdot\dfrac{-6^4}{5}=\dfrac{5^5\cdot3^4\cdot2^9}{3\cdot5}=5^4\cdot3^3\cdot2^9=2880000\)
e) \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\cdot\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\)
f) \(2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^3=2:\left(\dfrac{-1}{6}\right)^3=2:\dfrac{-1}{216}=-432\)
Tính:
a) x + 2 3/4 = 5 2/3 b) x - 1 4/5 = 3 2/7 c) X x 3 1/2 = 4 3/4 d) x : 2 2/3 =4 1/3
`x + 2 3/4 = 5 2/3`
`=> x + 11/4 = 17/3`
`=> x= 17/3 -11/4`
`=>x=35/12`
__
`x - 1 4/5 = 3 2/7`
`=> x- 9/5 = 23/7`
`=> x= 23/7 +9/5`
`=>x=178/35`
__
`x xx 3 1/2 =4 3/4`
`=> x xx 7/2 =19/4`
`=> x= 19/4 : 7/2`
`=> x= 19/4 xx 2/7`
`=> x= 19/14`
__
`x : 2 2/3 = 4 1/3`
`=> x : 8/3 = 13/3`
`=> x= 13/3 xx 8/3`
`=>x=104/9`
a: =>x+11/4=17/3
=>x=17/3-11/4=68/12-33/12=35/12
b: =>x-9/5=23/7
=>x=23/7+9/5=178/35
c: =>x*7/2=4,75
=>x=19/4:7/2=19/14
d: =>x:8/3=13/3
=>x=13/3*8/3=104/9
a, x + 2 3/4=5 2/3
b, x - 1 4/5=3 2/7
c, x x 3 1/2=4 3/4
d, x : 2 2/3=4 1/3
a) \(x+2\dfrac{3}{4}=5\dfrac{2}{3}\)
\(x+\dfrac{11}{4}=\dfrac{17}{3}\)
\(x=\dfrac{17}{3}-\dfrac{11}{4}\)
\(x=\dfrac{35}{12}\)
b) \(x-1\dfrac{4}{5}=3\dfrac{2}{7}\)
\(x-\dfrac{9}{5}=\dfrac{23}{7}\)
\(x=\dfrac{23}{7}+\dfrac{9}{5}\)
\(x=\dfrac{178}{35}\)
c) \(x\times3\dfrac{1}{2}=4\dfrac{3}{4}\)
\(x\times\dfrac{7}{2}=\dfrac{19}{4}\)
\(x=\dfrac{19}{4}\div\dfrac{7}{2}\)
\(x=\dfrac{19}{14}\)
d) \(x\div2\dfrac{2}{3}=4\dfrac{1}{3}\)
\(x\div\dfrac{8}{3}=\dfrac{13}{3}\)
\(x=\dfrac{13}{3}\times\dfrac{8}{3}\)
\(x=\dfrac{104}{9}\)
a) \(...=x+\dfrac{11}{3}=\dfrac{17}{3}\Rightarrow x=\dfrac{17}{3}-\dfrac{11}{3}=\dfrac{6}{3}=2\)
b) \(...\Rightarrow x-\dfrac{9}{5}=\dfrac{23}{7}\Rightarrow x=\dfrac{23}{7}+\dfrac{9}{5}=\dfrac{115}{35}+\dfrac{36}{35}=\dfrac{151}{35}\)
c) \(...\Rightarrow x.\dfrac{7}{2}=\dfrac{19}{4}\Rightarrow x=\dfrac{19}{4}:\dfrac{7}{2}\Rightarrow x=\dfrac{19}{4}.\dfrac{2}{7}=\dfrac{19}{14}\)
d) \(...\Rightarrow x:\dfrac{8}{3}=\dfrac{13}{3}\Rightarrow x=\dfrac{13}{3}.\dfrac{8}{3}=\dfrac{124}{9}\)
A. 1-c; 2-a, d; 3-g; 4-b, e.
B. 1-c; 2-a, e; 3-d, g; 4-b.
C. 1-a, d; 2-c; 3-b, e; 4-g.
D. 1-a, e; 2-c, d; 3-b; 4-g.
TÍNH TỔNG
a, A=2^0+2^1+2^2+...+2^2010
b, B=1+3+3^2+...+3^100
c, C=4+4^2=4^3+...+4^n
d, D=1+5+5^2+...+5^2000
\(a,A=2^0+2^1+2^2+....+\)\(2^{2010}\)
\(\Rightarrow2A=2^1+2^2+2^3+....+2^{2011}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(A=2^{2011}-2^0\)
\(A=2^{2011}-1\)
\(b,B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)
\(3B-B=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{101}-1}{2}\)
\(c,C=4+4^2+4^3+...+4^n\)
\(\Rightarrow4C=4^2+4^3+4^4+...+4^{n+1}\)
\(4C-C=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)
\(3C=4^{n+1}-4\)
\(\Rightarrow C=\frac{4^{n+1}-4}{3}\)
\(d,D=1+5+5^2+...+5^{2000}\)
\(\Rightarrow5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+5^3+...+5^{2001}\right)-\left(1+5+5^2+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(\Rightarrow D=\frac{5^{2001}-1}{4}\)
b)
B=1+3+3^2+3^3+..+3^100
=> 3B = 3 + 3^2 + 3^3 + ...+ 3^101
=> 3B - B = ( 3 + 3^2 + 3^3 + ...+ 3^101) - (1+3+3^2+3^3+..+3^100)
=> 2B = 3^101 - 1
=> B =( 3^101 - 1) / 2
bài 3:
a) x - 3/4 = 6 x 3/8 b) 7/8 : x = 3 - 1/2 c) x + 1/2 x 1/3 = 3/4
d) 3/2 x 4/5 - x = 2/3 e) X x 3 1/3 = 3 1/3 : 4 1/4 f) 5 2/3 : x = 3 2/3 - 2 1/2
a) \(x-\dfrac{3}{4}=6\times\dfrac{3}{8}\)
\(x-\dfrac{3}{4}=\dfrac{9}{4}\)
=> \(x=\dfrac{9}{4}+\dfrac{3}{4}=3\)
b) \(\dfrac{7}{8}:x=3-\dfrac{1}{2}\)
\(\dfrac{7}{8}:x=\dfrac{5}{2}\)
=> \(x=\dfrac{7}{8}:\dfrac{5}{2}=\dfrac{7}{20}\)
c) \(x+\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}\)
\(x+\dfrac{1}{6}=\dfrac{3}{4}\)
=> \(x=\dfrac{3}{4}-\dfrac{1}{6}=\dfrac{7}{12}\)
d) \(\dfrac{3}{2}\times\dfrac{4}{5}-x=\dfrac{2}{3}\)
\(\dfrac{6}{5}-x=\dfrac{2}{3}\)
=> \(x=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{8}{15}\)
e) \(x\times3\dfrac{1}{3}=3\dfrac{1}{3}:4\dfrac{1}{4}\)(?)
\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)
=> \(x=\dfrac{40}{51}:\dfrac{10}{3}=\dfrac{4}{17}\)
f) \(5\dfrac{2}{3}:x=3\dfrac{2}{3}-2\)
\(\dfrac{17}{3}:x=\dfrac{5}{3}\)
=> \(x=\dfrac{17}{3}:\dfrac{5}{3}=\dfrac{17}{5}\)
a: =>x-3/4=18/8=9/4
=>x=9/4+3/4=12/4=3
b: =>7/8:x=5/2
=>x=7/8:5/2=7/8*2/5=14/40=7/20
c: x+1/2*1/3=3/4
=>x+1/6=3/4
=>x=3/4-1/6=9/12-2/12=7/12
d: =>12/10-x=2/3
=>6/5-x=2/3
=>x=6/5-2/3=18/15-10/15=8/15
e: =>x*10/3=10/3:17/4=10/3*4/17
=>x=4/17
f: =>17/3:x=13/3-5/2=26/6-15/6=11/6
=>x=17/3:11/6=17/3*6/11=34/11