Rút gọn các biểu thức:
C = \(\sqrt{b^2\left(b-1\right)^2};\left(b< 0\right)\)
D = \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3};x< 3\)
Tìm x, biết:
a) \(\sqrt{x^2-2x+1}=2\)
b)\(\sqrt{x^2-1}=x\)
c) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
d) \(x-5\sqrt{x-2}=-2\)
e) \(2x-3\sqrt{2x-1}-5=0\)
Tính
a,(√5+√3+1)×(√5-1)
b,(5-2√3)×(5+2√3)
c,1/3×√15:3/4×√3×4√2×7√10
d,(10√48-6√27+4√12):√3
rút gọn biểu thức sau
a. \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-4}\)
b. \(\dfrac{a^2\sqrt{b}-\sqrt{ab^3}}{\sqrt{a^3b^2}-b^2}\)
c. \(\dfrac{a^3-2\sqrt{2}}{a-\sqrt{2}}\)
d. \(18-\sqrt{8}+\dfrac{1}{4}\sqrt{2}\)
1
a. \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\) b.\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\) c. \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d. \(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\) e. \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\) f. \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Tính : a)\(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}\)
b)\(\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)\)
c) \(\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\)
d)\(\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)\)b \(\ne\) 9 với a\(\ge\)0 , b\(\ge\)0, a\(\ne\) 4
Mọi người ai biết giúp tớ với ạ !! Mai tớ phải nộp rồi !! Cảm ơn mọi người trước !
\(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
\(B=\dfrac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\)rút gọn biểu thức với x>0 ( cho em xin lời giải chi tiết ạ )
Bài 1: Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên
a/C=\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) ; b/D=\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}\)
Bài 2: Chứng minh
a/\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}=\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\) b/\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)