Tìm giá trị nhỏ nhất : A = 11/4 + / 3x - 3/2 /
Tìm giá trị của x để biểu thức sau đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó?
A = x^2 – 4√3x – 3
Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này
Tìm giá trị của x để biểu thức A = |3x – 3| + ||x – 4| – 3| có giá trị nhỏ nhất,
tìm giá trị nhỏ nhất đó.
1) tìm giá trị nhỏ nhất của biểu thức:
A=/x-3/+8.
2) tìm giá trị nhỏ nhất của biểu thức:
B= 11- / 4+x /
3) tìm giá trị nhỏ nhất của biểu thức:
a) M=/x-3/+18-x/
b) M= /x-4/+/x-10/
2:
|x+4|>=0
=>-|x+4|<=0
=>B<=11
Dấu = xảy ra khi x=-4
tìm x
1/4 - 5/2 x |3x - 1/5|= 2/3 x |3x -1/5| - 2/3
tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của biểu thức sau
A=|4x - 1/4|+2016
B=2014-|3x - 1/5|
tìm giá trị của x để biểu thức A=|3x-3|+||x-4|-3| có giá trị nhỏ nhất,tìm giá trị đó.
tìm giá trị của x để biểu thức Z=|3x-3|+|x-4|-|3| có giá trị nhỏ nhất ,tìm giá trị nhỏ nhất đó.
Z=|3x-3|+|x-4|-|3|
=3|x-1|+|x-4|-3
Ta có \(\left|x-1\right|\ge x-1\)
\(2\left|x-1\right|\ge0\)
\(\left|x-4\right|\ge4-x\)
\(\Rightarrow Z\ge x-1+0+4-x-3=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\x-1=0\\x-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=1\\x\le4\end{cases}\Leftrightarrow}x=1}\)
1) chứng minh giá trị của biểu thức A phụ thuộc vào biến x
A=(3x-5)(2x+11)-(2x+3)(3x+7)
2) tìm số thực a để x3 - 3x2 + 5x +a chia hết cho x -2
3)tìm giá trị nhỏ nhất của biểu thức :A = 4x2 - 8x +2017
Tìm giá trị nhỏ nhất của biểu thức A= |x - 2| + |2x - 3| + |3x - 4|
bài này lm kiểu j z các bn
tìm giá trị nhỏ nhất |x-2|+|2x-3|+|3x-4|
Ta có:
\(\left|x-2\right|+\left|2x-3\right|+\left|3x-4\right|\)
\(\ge\left|3x-5\right|+\left|4-3x\right|\ge\left|\left(3x-5\right)+\left(4-3x\right)\right|=1\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left(x-2\right)\left(2x-3\right)\ge0\\\left(3x-5\right)\left(4-3x\right)\ge0\end{matrix}\right.\Leftrightarrow\dfrac{4}{3}\le x\le\dfrac{3}{2}\)