Phân tích : 1+8x^6y^3
Phân tích các đa thức sau thành nhân tử chung :
1+8x^6y^3
Phân tích đa thức thành nhân tử x^3-3x^2y+3xy^2-y^3-z^z^3
x^2-y^2+8x+6y+7
x³ - 3x²y + 3xy² - y³ - z³
= (x³ - 3x²y + 3xy² - y³) - z³
= (x - y)³ - z³
= (x - y - z)[(x - y)² + (x - y)z + z²]
= (x - y - z)(x² - 2xy + y² + xz - yz + z³)
--------------------
x² - y² + 8x + 6y + 7
= (x² + 8x + 16) - (y² - 6y + 9)
= (x + 4)² - (y - 3)²
= (x + 4 - y + 3)(x + 4 + y - 3)
= (x - y + 7)(x + y + 1)
a: \(=\left(x^3-3x^2y+3xy^2-y^3\right)-z^3\)
\(=\left(x-y\right)^3-z^3\)
\(=\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x-y\right)+z^2\right]\)
\(=\left(x-y-z\right)\left(x^2-2xy+y^2+xz-yz+z^2\right)\)
b: \(=x^2+8x+16-y^2+6y-9\)
=(x+4)^2-(y-3)^2
=(x+4+y-3)(x+4-y+3)
=(x+y+1)(x-y+7)
Phân Tích đa thức thành nhân tử:
a.4xy-10x^2
b.3x(x+1)+6y(x+1)
c.25x^2-y^2
d. 5xy^2-10xyz+5xz^2
e. x^2-5x+6
f. 12x^2y+8x^3+6xy^2+y^3
c: \(=\left(5x-y\right)\left(5x+y\right)\)
e: \(=\left(x-2\right)\left(x-3\right)\)
a) x(4y-10x)
b)3(x+2y)+(x+1)
c)(5x-y)(5x+y)
d)5x(y-z)2
e)(x-3)(x-2)
f)(2x+y)3
Phân tích đa thức thành nhân tử
x^2-y^2+8x+6y+7
\(x^2-y^2+8x+6y+7\)
\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)+x-y+7\)
\(=\left(x+y\right)\left(x-y+7\right)+\left(x-y+7\right)\)
\(=\left(x+y+1\right)\left(x-y+7\right)\)
Ta có x2 - y2 + 8x + 6y + 7
= x2 + 8x + 16 - y2 + 6y - 9
= \(x^2+4x+4x+16-y^2+3y+3y-9\)
= x(x + 4) + 4(x + 4) - y(y - 3) + 3(y - 3)
= (x + 4)2 - (y - 3)2
= (x + 4 + y - 3)(x + 4 - y + 3)
= (x + y + 1)(x - y + 7)
Phân tích các đa thức sau thành nhân tử:
a) 2xy + 3z + 6y + xz; b) a 4 - 9 a 3 + a 2 - 9a;
c) 3 x 2 + 5y - 3xy + (-5x); d) x 2 - (a + b)x + ab;
e) 4 x 2 - 4xy + y 2 - 9 t 2 ; g) x 3 – 3 x 2 y + 3x y 2 – y 3 – z 3
h) x2 - y2 + 8x + 6y + 7.
a) Cách 1.
Ta có 2xy + 3z + 6y + xz = (2xy + xz) + (3z + 6y)
= x(2 y + z)+3(z + 2 y) = (z + 2y)(x + 3).
Cách 2.
Ta có 2xy + 3z + 6y + xz = (2x1/ + 6y) + (3z + xz)
= 2y(x + 3) + z(3 + x) = (z + 2y)(x + 3).
b) Biến đổi được a 4 - 9 rt 3 + a 2 -9a = (a- 9)a( a 2 +1).
c) Biến đổi được 3 x 2 + 5y - 3xy + (-5x) = (x - y)(3x - 5).
d) Biến đổi được x 2 - (a + b)x + ab = (x- a)(x - b).
e) Ta có 4 x 2 - 4xy + y 2 – 9 t 2 = ( 2 x - y ) 2 - ( 3 t ) 2
= (2x - y - 3t )(2x - y + 31).
g) Ta có x 3 - 3 x 2 y + 3 xy 2 - y 3 - z 3
= ( x - y ) 3 - z 3 = (x - y - z)( x 2 + y 2 + z 2 - 2xy + xz - yz).
h) Ta có x 2 - y 2 + 8x + 6y+ 7 = ( x 2 +8x + 16) - ( y 2 - 6y+ 9)
= ( x + 4 ) 2 - ( y - 3 ) 2 =(x-y + 7)(x + y + l).
phân tích đa thức thành nhân tử
a) x2+y2+4xy
b) (4x-3y+z)+(8x-6y+27).(3y+z)+(3y+z)2
a: \(x^2+4xy+y^2\)
\(=x^2+4xy+4y^2-3y^2\)
\(=\left(x+2y-y\sqrt{3}\right)\left(x+2y+y\sqrt{3}\right)\)
phân tích đa thức thành nhân tử:
3x2-11x+6
8x2+10x-3
8x2-2x-1
x2-y2+10x-6y+16
x4+x2y2+y4
a, \(3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(x-3\right)\left(3x-2\right)\)
b. \(8x^2-2x+12x-3=2x\left(4x-1\right)+3\left(4x-1\right)=\left(4x-1\right)\left(2x+3\right)\)
c. đề kiểu gì vậy? -2x-x để thành -3x à? xem lại đi nha
d. \(\left(x^2+10x+25\right)-\left(y^2+6y+9\right)=\left(x+5\right)^2-\left(y+3\right)^2=\left(x+5-y-3\right)\left(x+5+y+3\right)=\left(x-y+2\right)\left(x+y+8\right)\)
e. \(=x^4+2x^2y^2+y^4-x^2y^2=\left(x^2+y^2\right)^2-x^2y^2=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)
nhớ L I K E
phân tích đa thức thành nhân tử
a.3x2-11x+6
b.8x2+10x-3
c.8x2-2x-1
d.x2-y2+10x-6y+16
e.x4+x2y2+y4
a.\(3x^2-11x+6\)
= \(3x^2-9x-2x+6\)
=\(3x\left(x-3\right)-2\left(x-3\right)\)
=\(\left(x-3\right)\left(3x-2\right)\)
b\(8x^2+10x-3\)
=.\(8x^2-2x+12x-3\)
=\(2x\left(4x-1\right)+3\left(4x-1\right)\)
=\(\left(4x-1\right)\left(2x+3\right)\)
d.\(x^2-y^2+10x-6y+16\)
=\(\left(x^2+10x+25\right)-\left(y^2+6y+9\right)\)
=\(\left(x+5\right)^2-\left(y+3\right)^2\)
=\(\left(x+5-y-3\right)\left(x+5+y+3\right)\)
=\(\left(x-y+2\right)\left(x+y+8\right)\)
e.\(x^4+x^2y^2+y^4\)
=\(x^4+2x^2y^2+y^4-x^2+y^2\)
=\(\left(x^2+y^2\right)^2-x^2y^2\)
=\(\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)
a)
\(=3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(x-3\right)\left(3x-2\right)\)
b)
\(=8x^2-2x+12x-3=2x\left(4x-1\right)+3\left(4x-1\right)=\left(4x-1\right)\left(2x+3\right)\)
Bài 2. (2,0 điểm): Phân tích các đa thức sau thành nhân tử:
a) 3x² + 6xy
c) x² - 8x + 7
b) x²-2xy + 3x - 6y
d) 4x² - y²
a)\(=3x\left(x+2y\right)\)
c)\(=\left(x-7\right)\left(x-1\right)\)
b)\(=x\left(x-2y\right)+3\left(x-2y\right)=\left(x+3\right)\left(x-2y\right)\)
d)\(=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
\(a,3x^2+6xy=3x\left(x+2y\right)\\ c,x^2-8x+7=\left(x^2-x\right)-\left(7x-7\right)=x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(x-7\right)\\ b,x^2-2xy+3x-6y=\left(x^2+3x\right)-\left(2xy+6y\right)=x\left(x+3\right)-2y\left(x+3\right)=\left(x+3\right)\left(x-2y\right)\\ d,4x^2-y^2=\left(2x-y\right)\left(2x+y\right)\)