Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
google help
Xem chi tiết
Lê Mai
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 12 2021 lúc 10:26

\(1,ĐK:x,y\ne0\\ HPT\Leftrightarrow\left\{{}\begin{matrix}2x^2y^2=y^3+1\\2x^2y^2=x^3+1\end{matrix}\right.\\ \Leftrightarrow x^3+1=y^3+1\\ \Leftrightarrow x^3=y^3\Leftrightarrow x=y\)

Thay vào PT 1

\(\Leftrightarrow2x^4=x^3+1\\ \Leftrightarrow2x^4-x^3-1=0\\ \Leftrightarrow2x^4-2x^3+x-1=0\\ \Leftrightarrow\left(2x^3+1\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^3=-\dfrac{1}{2}\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=\sqrt[3]{-\dfrac{1}{2}}\\x=y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\sqrt[3]{-\dfrac{1}{2}};\sqrt[3]{-\dfrac{1}{2}}\right);\left(1;1\right)\)

\(2,ĐK:x,y\ge1\\ HPT\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)+\sqrt{y-1}=\dfrac{1}{2}\\2\left(y-1\right)+\sqrt{x-1}=\dfrac{1}{2}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}2a^2+b=\dfrac{1}{2}\\2b^2+a=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow2\left(a-b\right)\left(a+b\right)-\left(a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(2a+2b-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=b\\2a+2b=1\end{matrix}\right.\)

Với \(a=b\Leftrightarrow x-1=y-1\Leftrightarrow x=y\)

Thay vào \(PT\left(1\right)\Leftrightarrow2x+\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow2\sqrt{x-1}=5-4x\)

\(\Leftrightarrow4x-4=25-40x+16x^2\\ \Leftrightarrow16x^2-44x+29=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y=\dfrac{11+\sqrt{5}}{8}\left(tm\right)\\x=y=\dfrac{11-\sqrt{5}}{8}\left(tm\right)\end{matrix}\right.\)

Với \(2a+2b=1\Leftrightarrow b=\dfrac{1}{2}-a\Leftrightarrow\sqrt{y-1}=\dfrac{1}{2}-\sqrt{x-1}\)

Thay vào \(PT\left(1\right)\Leftrightarrow2x+\dfrac{1}{2}-\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow2x-2=\sqrt{x-1}\)

\(\Leftrightarrow4x^2-8x+4=x-1\\ \Leftrightarrow4x^2-9x+5=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\Rightarrow y=1\left(tm\right)\\x=1\Rightarrow y=\dfrac{5}{4}\left(tm\right)\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\dfrac{11+\sqrt{5}}{8};\dfrac{11+\sqrt{5}}{8}\right);\left(\dfrac{11-\sqrt{5}}{8};\dfrac{11-\sqrt{5}}{8}\right);\left(\dfrac{5}{4};1\right);\left(1;\dfrac{5}{4}\right)\)

Nguyễn Thành
Xem chi tiết
Lấp La Lấp Lánh
7 tháng 10 2021 lúc 17:44

9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)

11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Lấp La Lấp Lánh
7 tháng 10 2021 lúc 17:52

13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)

14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)

15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)

Đức Mai Văn
Xem chi tiết
Huyền
25 tháng 6 2019 lúc 10:18

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

tthnew
3 tháng 11 2019 lúc 9:24

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

Khách vãng lai đã xóa
ILoveMath
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Hồng Phúc
30 tháng 7 2021 lúc 15:06

a, \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-y\right)\left(x^2+y^2\right)=26\\\left(x-y\right)\left(x+y\right)^2=25\end{matrix}\right.\)

Trừ vế theo vế \(pt\left(1\right)\) cho \(pt\left(2\right)\) ta được:

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-2xy\right)=1\)

\(\Leftrightarrow\left(x-y\right)^3=1\)

\(\Leftrightarrow x-y=1\)

Khi đó hệ trở thành:

\(\left\{{}\begin{matrix}x^2+y^2=13\\\left(x+y\right)^2=25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=13\\13+2xy=25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=13\\2xy=12\end{matrix}\right.\)

Cộng vế theo vế 2 phương trình:

\(\left(x+y\right)^2=25\)

\(\Leftrightarrow x+y=\pm5\)

TH1: \(x+y=5\)

Ta có hệ: \(\left\{{}\begin{matrix}x-y=1\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

TH2: \(x+y=-5\)

Ta có hệ: \(\left\{{}\begin{matrix}x-y=1\\x+y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

Hồng Phúc
30 tháng 7 2021 lúc 15:55

b, \(\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\y-y^2x-2y^2=-2\end{matrix}\right.\)

ĐK: \(y\ne0\)

\(\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\y-y^2x-2y^2=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\\dfrac{1}{y}-x-2=-\dfrac{2}{y^2}\end{matrix}\right.\)

Đặt \(\dfrac{1}{y}=t\), hệ trở thành:

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+x-t=2\\2t^2+t-x=2\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t+1\right)=0\)

\(\Leftrightarrow...\)

Nguyễn Văn Tài Tâm
Xem chi tiết
Xyz OLM
18 tháng 3 2023 lúc 6:18

1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)

3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)

 

Trần Thu Trang
Xem chi tiết
KZ
27 tháng 2 2018 lúc 20:18

(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y

(2) + (3)

+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)

+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ

VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)

+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y

Miamoto Shizuka
Xem chi tiết
Vũ Cao Xuân Bách
30 tháng 11 2020 lúc 6:10

hello bạn

Khách vãng lai đã xóa
Shader gaming
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 18:14

a.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

Nguyễn Việt Lâm
28 tháng 1 2021 lúc 18:16

b.

ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)

Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:

\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)

\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)

\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)

Thay xuống pt dưới:

\(6y+y=14\Rightarrow y=2\)

\(\Rightarrow x=4\)