Cho \(\Delta\)HIK có phân giác HM(M\(\in\)IK). Biết HI=3cm, HK=4cm, IK=5cm. Tính MI và MK
Tam giác HIK có HI=5cm,HK=7,5cm,IK=10cm ,M thuộc HI,N thuộc HK sao cho HM=3cm,HN=2cm a/tam giác HIK đồng dạng tam giác HNM b/Tính MN c/Qua I vẽ đường thẳng song song với MN cắt HK tại A chứng minh tam giác HIK đồng dạng tam giác HAI;HI.AI=HA.IK
a: Xét ΔHIK và ΔHNM có
HI/HN=HK/HM=5/2
góc H chung
=>ΔHIK đồng dạng với ΔHNM
b:
ΔHIK đồng dạng với ΔHNM
=>IK/NM=5/2
=>10/NM=5/2
=>NM=4cm
c: Xét ΔHIK và ΔHAI có
góc HIK=góc HAI(=góc HNM)
góc Hchung
=>ΔHIK đồng dạng với ΔHAI
cho tam giác MPQ vuông tại M
A/ cho tam giác MPQ vuông tại M biết MP= 3cm , MQ = 4cm , tính PQ
B/ cho tam giác HIK Vuông tại H biết HI = 6cm , Ik= 10 cm , tính HK
a) Áp dụng định lí Pytago vào ΔQMP vuông tại M, ta được:
\(PQ^2=MP^2+MQ^2\)
\(\Leftrightarrow PQ^2=3^2+4^2=25\)
hay PQ=5(cm)
Vậy: PQ=5cm
Vẽ tam giác HIK với HK = 6cm, HI =5cm và IK =4cm
Vẽ tam giác HIK biết :
HK= 6cm,HI = 5cm,IK=4cm
(Vẽ vô vở cx được)
Đầu tiên kẻ đoạn thẳng HK 6cm. Dùng compa vẽ đường tròn có bán kính 5cm tâm H. Vẽ đường tròn bán kính 4cm tâm K. Giao điểm hai đường tròn là điểm I
HIK vuông tại H có HI= 3cm; IK= 5cm. Độ dài cạnh HK bằng A. 4cm B. 6cm C.8cm D.10cm
Theo định lí Pytago tam giác HIK vuông tại H
\(HK=\sqrt{IK^2-HI^2}=4cm\)
chọn A
Cho tam giác HIK vuông tại H có HI=5cm, IK=13cm a. Tính độ dài cạnh HK b. Vẽ tia phân giác IM của góc I (M € HK). Kẻ ME vuông IK (E € IK) Chứng minh: tam giác HIM = tam giác EIM c. Chứng minh IM vuông EH
a: HK=12cm
b: Xét ΔIHM vuông tại H và ΔIEM vuông tại E có
IM chung
\(\widehat{HIM}=\widehat{EIM}\)
Do đó:ΔIHM=ΔIEM
c: Ta có: ΔIHM=ΔIEM
nên IH=IE; MH=ME
=>IM là đường trung trực của EH
a, Xét Δ IHK vuông tại H, có :
\(IK^2=IH^2+HK^2\) (định lí Py - ta - go)
=> \(13^2=5^2+HK^2\)
=> \(HK^2=144\)
=> HK = 12 (cm)
b, Xét Δ HIM và Δ EIM, có :
\(\widehat{HIM}=\widehat{EIM}\) (IM là tia phân giác \(\widehat{HIE}\))
IM là cạnh chung
\(\widehat{IHM}=\widehat{IEM}=90^o\)
=> Δ HIM = Δ EIM (g.c.g)
c, Ta có : Δ HIM = Δ EIM (cmt)
=> HI = EI
=> Δ HIE cân tại I
Ta có :
Δ HIE cân tại I
IM là tia phân giác \(\widehat{HIE}\)
=> IM ⊥ EH
Tam giác HIK vuông tại H có HI=3cm, HK=4cm. Độ dài cạnh huyền IK bằng:
TK
IK2=HI2 +HK2=32+42 =25 (định lý pitago) ⇒IK=5cm
Bài 4: Cho tam giác HIK vuông tại H (HI < HK) có IM là đường phân giác của góc I (M thuộc HK ). Kẻ MN vuông góc với IK (N thuộc IK)
a) Chứng minh rằng: Tam giác HIM = Tam giác NIM
b) Chứng minh: HM =MN
c) So sánh HM và MK
GIÚP MÌNH VỚI, GIẢI CHI TIẾT NHÉ
a: Xét ΔIHM vuông tại H và ΔINM vuông tại N có
IM chung
\(\widehat{HIM}=\widehat{NIM}\)
Do đó: ΔIHM=ΔINM
b: ta có: ΔIHM=ΔINM
nên HM=NM
c: Ta có: HM=MN
mà MN<MK
nên HM<MK
Cho tam giác HIK cân tại H, có HI=HK=10cm, IK=8 cm. Tia phân gíac của góc I và K lần lượt cắt HK, HI tại N, M.
a, Chứng minh: tam giác HMN đồng dạng với tam giác HIK
b, Tính MN
c, Gọi E là giao điểm của IN và KM. Chứng minh: HE là đường trung trực của IK.
a: Xét ΔHIK có IN là phân giác
nên HN/NK=HI/IK=HK/IK(1)
Xét ΔHIK có KM là phân giác
nên HM/MI=HK/KI(2)
Từ (1) và (2) suy ra HN/NK=HM/MI
=>MN//IK
=>ΔHMN\(\sim\)ΔHIK
b: Ta có: HN/HI=NK/IK
=>HN/10=NK/8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{HN}{5}=\dfrac{NK}{4}=\dfrac{HN+NK}{5+4}=\dfrac{10}{9}\)
Do đó: HN=50/9(cm)
Xét ΔHIK có MN//IK
nên MN/IK=HN/HK
\(\Leftrightarrow MN=\dfrac{50}{9}:10\cdot8=\dfrac{40}{9}\left(cm\right)\)