Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Công Thanh Tài
Xem chi tiết
Thanh Hoàng Thanh
10 tháng 3 2022 lúc 9:04

\(\widehat{A}=180^o-30^o-44^o=106^o.\)

Áp dụng định lý sin ta có:

\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}.\)

\(\Rightarrow\dfrac{BC}{sin106^o}=\dfrac{7}{sin44^o}=\dfrac{AB}{sin30^o}.\)

\(\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{7.sin106^o}{sin44^o}\approx9,7.\\AB=\dfrac{7.sin30^o}{sin44^o}\approx5,0.\end{matrix}\right.\) (đvđd).

\(S_{\Delta ABC}=\dfrac{1}{2}AB.AC.\sin A\approx\dfrac{1}{2}.5,0.7.\sin106^o\approx17,4\) (đvdt).

 \(S=pr=\dfrac{AB+AC+BC}{2}.r.\\ \Rightarrow17,4\approx\dfrac{5,0+7+9,7}{2}.r.\) 

\(\Rightarrow r\approx1,6\) (đvđd).

Linh Võ
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 13:09

Có \(\widehat{B}=180^0-105^0-30^0=45^0\)

Kẻ AH vuông góc với BC

 \(\Rightarrow\Delta ABH\) là tam giác vuông cân tại A

\(\Rightarrow AH=BH\)

Có \(tanC=\dfrac{AH}{HC}\Leftrightarrow HC=\dfrac{AH}{tan30^0}=\sqrt{3}AH\)

\(\Rightarrow BH+CH=AH+\sqrt{3}AH\Leftrightarrow BC=\left(1+\sqrt{3}\right)AH\)\(\Leftrightarrow AH=\dfrac{BC}{1+\sqrt{3}}=\dfrac{2}{1+\sqrt{3}}\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.\dfrac{2}{1+\sqrt{3}}.2=\dfrac{2}{1+\sqrt{3}}\) (cm2)

Vậy...

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:40

Áp dụng định lí sin trong tam giác ABC, ta có:

\(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\)

\( \Rightarrow AC = \sin B.\frac{{AB}}{{\sin C}} = \sin {60^o}.\frac{{12}}{{\sin {{45}^o}}} = 6\sqrt 6 \)

Lại có: \(\widehat A = {180^o} - ({60^o} + {45^o}) = {75^o}\)

\( \Rightarrow \)Diện tích tam giác ABC là:

\(S = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.12.6\sqrt 6 .\sin {75^o} \approx 85,2\)

Vậy diện tích tam giác ABC là 85,2.

Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 18:01

Kẻ đường cao AH ứng với BC

Trong tam giác vuông ACH:

\(sinC=\dfrac{AH}{AC}\Rightarrow AH=AC.sinC\)

\(cosC=\dfrac{CH}{AC}\Rightarrow CH=AC.cosC\)

Trong tam giác vuông ABH:

\(tanB=\dfrac{AH}{BH}\Rightarrow BH=\dfrac{AH}{tanB}=\dfrac{AC.sinC}{tanB}\)

Do đó:

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH\left(BH+CH\right)=\dfrac{1}{2}.4,5.sin55^0.\left(\dfrac{4,5.sin55^0}{tan60^0}+4,5.cos55^0\right)\approx8,68\left(cm^2\right)\)

Nguyễn Việt Lâm
27 tháng 7 2021 lúc 18:02

undefined

Hồ Quốc Khánh
Xem chi tiết
Ngọc Bùi Minh
9 tháng 9 2016 lúc 23:27

 a)

A C B D Theo tính chất đường phân giác áp dụng cho \(\Delta ABC\) có BD là phân giác góc ABC \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{1}{2}\)

\(\Delta ABC\) vuông tại A\(\Rightarrow\tan B=\frac{AB}{BC}=\frac{1}{2}\Rightarrow\widehat{B}\approx27\)

b,  O C A B

Thấy \(\widehat{ACB}\) nội tiếp \(\left(O\right)\) chắn cung AB nhỏ 

\(\Rightarrow\widehat{ACB}=\frac{1}{2}sđ\overline{AB}\left(1\right)\)

Thấy \(\widehat{AOB}\) chắn cung AB nhỏ \(\Rightarrow\widehat{AOB}=sđ\overline{AB}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{AOB}=2\widehat{ACB}=2\left(180^o-70^o-60^o\right)=2.50^o=100^o\)

 

Lê Phương Nhung
Xem chi tiết
Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 22:52

undefined

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 22:51

Kẻ đường cao AH ứng với BC, đặt \(CH=x\Rightarrow BH=4-x\)

Trong tam giác vuông ABH

\(tanB=\dfrac{AH}{BH}\Rightarrow AH=BH.tanB=\left(4-x\right).tan70^0\)

Trong tam giác vuông ACH: 

\(tanC=\dfrac{AH}{CH}\Rightarrow AH=CH.tanC=x.tan45^0=x\)

\(\Rightarrow\left(4-x\right)tan70^0=x\)

\(\Leftrightarrow\left(1+tan70^0\right)x=4.tan70^0\)

\(\Leftrightarrow x=\dfrac{4tan70^0}{1+tan70^0}\approx2,2\left(cm\right)\)

\(\Rightarrow CH=AH=2,2\left(cm\right)\)

\(AC=\sqrt{CH^2+AH^2}=AH\sqrt{2}\approx3,1\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.2,2.4=4,4\left(cm^2\right)\)

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
17 tháng 9 2023 lúc 22:04

a) Tam giác ABC nhọn:

 

b) Tam giác ABC vuông tại A:

 

c) Tam giác ABC có góc A tù:

Nhân Trần
Xem chi tiết