cho 2 đường tròn o bán kính R và đường tròn o' bán kính R' cắt tại 2 điểm A và B.dựng CD là tiếp tuyến chung của 2 đường tròn sao cho B gần CD hơn A. CMR SABC=SABD
Cho hai đường tròn có cùng tâm O, bán kính lần lượt là R và r (R > r). A là một điểm thuộc đường tròn bán kính r. Hãy dựng đường thẳng qua A cắt đường tròn bán kính r tại B, cắt đường tròn bán kính R tại C, D sao cho CD = 3AB
Gọi (C) là đường tròn tâm O bán kính r, \(\left(C_1\right)\) là đường tròn tâm O bán kính R. Giả sử đường thẳng đã dựng được. Khi đó có thể xem D là ảnh của B qua phép đối xứng qua tâm A. Gọi (C') là ảnh của (C) qua phép đối xứng qua tâm A, thì D thuộc giao của (C') và \(\left(C_1\right)\).
Số nghiệm của bài toán phụ thuộc vào số giao điểm của (C') và \(\left(C_1\right)\).
Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn . Qua a kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm ) . Tia Ax nằm giữa AB và AO cắt đường tròn O,R tại 2 điểm C và D (C nằm giữa A và D ) . Gọi M là trung điểm của dây CD, kẻ BH vuông góc với AO tại H
a/ tính OH . AO theo R
b/ cho góc ABC = góc ADB . Chứng minh AC.AD=AH.AOvà cho góc CHO=góc CDO =180°
c/Qua C kẻ tiếp tuyến thứ hai Cho với đuờng tròn (O) cắt OM tại E. Chứng minh điểm E,H,B thẳng hàng.
a: Xét ΔOBA vuông tại B có BH là đường cao
nên OH*OA=OB^2=R^2
b: Xét ΔABC và ΔADB có
góc ABC=góc ADB
góc BAC chung
Do đó; ΔABCđồng dạng với ΔADB
=>AB/AD=AC/AB
=>AB^2=AD*AC
=>AD*AC=AH*AO
cho đường tròn tâm o bán kính r. đường kính cd và 1 điểm m thuộc đường tròn o sao cho mc<md. kẻ mh vuông góc với cd tại h. chứng minh tam giác cmd vuông cho mc=6. md=8 tính mh. tiếp tuyến tại c của đường tròn o cắt dm tại e. goị f là trung điểm của ce. chứng minh fm là tiếp tuyến của đường tròn o. tiếp tuyến tại d của đường tròn o cắt fm tại p. chứng minh cf*dp=r^2. chứng minh cp vuông góc với oe
Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn ( O,R) tại B và tại C cắt nhau tại A. Kẻ đường tròn CD, kẻ BH vuông góc với CD tại H. A. Chứng minh bốn điểm A,B,O,C cùng thuộc 1 đường tròn. B. chứng minh AO vuông góc với BC. Cho biết R=15cm, BC=24cm. Tính AB,OA. C. Gọi I là giao điểm của AD và BH,E là giao điểm của BC và AC. Chứng minh IH=IB
a: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại trung điểm K của BC
K là trung điểm của BC
nên \(KB=KC=\dfrac{BC}{2}=12\left(cm\right)\)
Ta có: ΔBKO vuông tại K
=>\(KB^2+KO^2=OB^2\)
=>\(OK^2=15^2-12^2=81\)
=>\(OK=\sqrt{81}=9\left(cm\right)\)
Xét ΔOBA vuông tại B có BK là đường cao
nên \(OK\cdot OA=OB^2\)
=>\(OA=\dfrac{15^2}{9}=25\left(cm\right)\)
Ta có: ΔOBA vuông tại B
=>\(BO^2+BA^2=OA^2\)
=>\(BA^2=25^2-15^2=400\)
=>\(BA=\sqrt{400}=20\left(cm\right)\)
c: Sửa đề: E là giao điểm của AC và BD
Ta có: BH\(\perp\)CD
AC\(\perp\)CD
Do đó: BH//CD
Xét ΔDCA có HI//CA
nên \(\dfrac{HI}{CA}=\dfrac{DI}{DA}\left(3\right)\)
Xét ΔDAE có IB//AE
nên \(\dfrac{IB}{AE}=\dfrac{DI}{DA}\left(4\right)\)
Xét (O) có
ΔDBC nội tiếp
DC là đường kính
Do đó: ΔDBC vuông tại B
=>DB\(\perp\)BC tại B
=>BC\(\perp\)DE tại B
=>ΔCBE vuông tại B
Ta có: \(\widehat{ABE}+\widehat{ABC}=\widehat{CBE}=90^0\)
\(\widehat{AEB}+\widehat{ACB}=90^0\)(ΔCBE vuông tại B)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABE}=\widehat{AEB}\)
=>AB=AE
mà AB=AC
nên AE=AC
Từ (3) và (4) suy ra \(\dfrac{HI}{CA}=\dfrac{IB}{AE}\)
mà CA=AE
nên HI=IB
cho đường tròn (O;R) , dây BC\(\ne\)đường kính . 2 tiếp tuyến của đg tròn tại B và C cắt nhau tại A. Kẻ đường kính CD . Kẻ BH vuông góc CD tại H
a, CM: A,B,O,C cùng thuộc 1 đường tròn . Xác định tâm,bán kính đường tròn đó
b, CM : AO vuông góc BC . Tính AB,OA biết R=1,5 và BC=24
c, CM: BC là phân giác góc ABH
d, I là giao điểm AD và BH , BD giao AC tại E . CM : IH=IB
Cho đường tròn tâm O , bán kính R và điểm A nằm ngoài đường tròn sao cho OA > 2R . Từ A kẻ hai tiếp tuyến AB , AC đến đường tròn (O) (B,C là 2 tiếp điểm ) . Trên cung nhỏ BC lấy điểm D sao cho CD < BD , tia AD cắt đường tròn (O) tại điểm E (E khác D). Qua B vẽ đường thẳng song song với AE cắt (O) tại K , CK cắt DE tại M.Vẽ tia AC cắt BE tại F .c/m nếu E là trung điểm của BF thì BC=DE
Cho nửa đường tròn tâm O bán kính R, đường kính ab chứa nửa đường tròn, kẻ hai tiếp tuyến Ax và By với đường tròn. M là một điểm bất kỳ trên nửa đường tròn. Tiếp tuyến tại M cắt Ax, By lần lượt tại C và D.
a) CMR: CD = AC + BD và góc COD vuông
b) CMR: \(AC.BD=R^2\)
c) OC cắt AM tại E; OD cắt BM tại F, chứng minh EF = R
Cho đường tròn tâm O bán kính R, dây BC khác đường kính, Hai tiếp tuyến của đường tròn (O;R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh $AO \bot BC.$
b) Cho biết $R = 15, BC = 24 (cm).$ Tính AB, OA.
c) Chứng minh BC là tia phân giác $\widehat{ABH}.$
Em cần câu c thôi ạ.
Hình vẽ.
\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)
\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)
Cho nửa đường tròn tâm O bán kính R, đường kính ab chứa nửa đường tròn, kẻ hai tiếp tuyến Ax và By với đường tròn. M là một điểm bất kỳ trên nửa đường tròn. Tiếp tuyến tại M cắt Ax, By lần lượt tại C và D.
a) CMR: CD = AC + BD và \(\widehat{COD}\) vuông'
b) CMR: \(AC.BD=R^2\)
c) OC cắt AM tại E; OD cắt BM tại F, chứng minh EF = R
a: Xét (O) có
CM,CA là tiếp tuyến
Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)
=>\(\widehat{COM}=\dfrac{1}{2}\cdot\widehat{MOA}\)
Xét (O) có
DM,DB là tiếp tuyến
Do đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)
=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)
\(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)
\(=\dfrac{1}{2}\cdot\widehat{MOA}+\dfrac{1}{2}\cdot\widehat{MOB}\)
\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
CD=CM+MD
mà CM=CA và DM=DB
nên CD=CA+DB
b: Xét ΔOCD vuông tại O có OM là đường cao
nên \(OM^2=CM\cdot MD\)
=>\(AC\cdot BD=R^2\)
c: CM=CA
OM=OA
Do đó: CO là đường trung trực của AM
=>CO\(\perp\)AM tại E
DM=DB
OM=OB
Do đó: OD là đường trung trực của MB
=>OD\(\perp\)MB tại F
Xét tứ giác MEOF có
\(\widehat{MEO}=\widehat{MFO}=\widehat{FOE}=90^0\)
=>MEOF là hình chữ nhật
=>EF=OM=R