tìm p biết p và p2 + 44 cùng là số nguyên tố
SỐ NGUYÊN TỐ P SAO CHO P2+44 LÀ SỐ NGUYÊN TỐ P=?
Giả sử p khác 3.Suy ra p không chia hết cho 3 do p là số nguyên tố.
Suy ra p chia 3 dư 1 hoặc 2.
1) p chia 3 dư 1=> p=3k+1=>p^2+44=(3k+1)^2+44=9k^2+6k+45=3(... chia hết cho 3,do đó ko là số nguyên tố
2)p chia 3 dư 2, cũng y vậy p^2+44 chia hết cho 3,do đó cũng ko là số nguyên tố
Vậy chỉ có p=3 thỏa thôi
Để ý rằng \(p^2-4=\left(p-2\right)\left(p+2\right)\), hơn nữa \(p-2< p+2\) nên để \(p^2-4\) là số nguyên tố thì \(p-2=1\) và \(p+2\) là số nguyên tố \(\Leftrightarrow p=3\).
Thử lại, ta thấy rõ rằng \(3^2+4=13\) và \(3^2-4=5\) đều là các số nguyên tố. Vậy, \(p=3\)
cho biết p và p^2 +44 cùng là số nguyên tố .Vậy p=.......................
Vì p là số nguyên tốt nên ta chỉ xét các giá trị p là số nguyên tố trong p.p+44
Xét p=2 thì p.p+44=2.2+44=48 sẽ chia hết cho 2 (loại)
Xét p=3 thì p.p+44=3.3+44=53 sẽ là số nguyên tố (chọn)
Xét p>3, do các giá trị p nguyên tố lớn hơn 3 đều có p.p chia 3 dư 1 hay p2 = x.3+1. Mà 44 = 14.3+2 => p.p+44 chia hết cho 3.
Vậy giá trị p=3
Mọi người biết thì chỉ cho mk với nha
Tìm số nguyên tố p sao cho p2 +44 là số nguyên tố.
Giúp mk với nha ,thanks.
Với \(p=3\), ta có: \(3\) là số nguyên tố và \(p^2+44=3^2+44=53\) cũng là số nguyên tố.
Vậy \(p=3\) thỏa mãn.
* Với \(p\ne3\), vì p là số nguyên tố nên p không chia hết cho 3. Ta xét các trường hợp sau:
- Trường hợp 1: p chia 3 dư 1 => \(p=3k+1\left(k\in N\right)\)
Ta có:
\(p^2+44=\left(3k+1\right)^2+44=\left(3k+1\right).\left(3k+1\right)+44\)
\(=3k.\left(3k+1\right)+1.\left(3k+1\right)+44=9k^2+3k+3k+1+44\)
\(=9k^2+6k+45=3.\left(3k^2+2k+15\right)\) chia hết cho 3
Vậy trường hợp này loại
- Trường hợp 2: p chia 3 dư 2 => \(p=3k+2\left(k\in N\right)\)
Ta có:
\(p^2+44=\left(3k+2\right)^2+44=\left(3k+2\right).\left(3k+2\right)+44\)
\(=3k.\left(3k+2\right)+2.\left(3k+2\right)+44=9k^2+6k+6k+4+44\)
\(=9k^2+12k+48=3.\left(3k^2+4k+16\right)\) chia hết cho 3
Vậy trường hợp này loại
Tóm lại, chỉ có p = 3 là thỏa mãn đề bài.
* Với p = 3, ta có: 3 là số nguyên tố và p^2 + 44 = 3^2 + 44 = 53 cũng là số nguyên tố
Vậy p = 3 thỏa mãn
Với p \(\ne\) 3, vì p là số nguyên tố nên p không chia hết cho 3. Ta xét các trường hợp sau:
Trường hợp 1: p chia 3 dư 1 => \(p=3k+1\left(k\in N\right)\)
Ta có:
p^2 + 44 = (3k+1)^2 + 44 = (3k+1).(3k+1) + 44
= 3k.(3k+1) + 1.(3k+1) + 44 = 9k^2 +3k + 3k + 1 + 44
= 9k^2 + 6k + 45 = 3.(3k^2+2k+15) chia hết cho 3
Vậy trường hợp này loại
- Trường hợp 2: p chia 3 dư 2 => \(p=3k^2+2\left(k\in N\right)\)
Ta có:
p^2+44=(3k+2)2+44=(3k+2).(3k+2)+44
=3k.(3k+2)+2.(3k+2)+44=9k^2+6k+6k+4+44
=9k^2+12k+48=3.(3k^2+4k+16) chia hết cho 3
Vậy trường hợp này loại.
Tóm lại, chỉ có p=3 là thỏa mãn đề bài
1) Tìm số tự nhiên nhỏ nhất chia cho 5 dư 1, chia cho 7 dư 3.
2) Tìm số nguyên tố p sao cho p2 +4 và p2– 4 đều là số nguyên tố.
Gọi số cần tìm là a ( a ∈ N)
Ta có:
a chia 5 dư 1
⇒ a+4 chia hết cho 5
a chia 7 dư 3
⇒ a+4 chia hết cho 7
Mà (5,7) = 1
⇒ a+4 chia hết cho 35
Vì a là số tự nhiên nhỏ nhất
⇒a+4 = 35
⇒a=35-4
⇒a=31
Vậy số tự nhiên cần tìm là 31
1)Gọi số x là số tự nhiên nhỏ nhất cần tìm, theo đề bài ta có :
x=5a+1 ; x=7b+3
Nên 5a+1=7b+3
5a-7b=2
Ta thấy 5.6-7.4=2
Nên a=6; b=4
Vậy x=31
2) Theo đề bài : p2 + 4 và p2 - 4 đều là số nguyên tố
⇒ (p2 + 4) và (p2 - 4) ⋮ 1 và chính nó
⇒ (p2 + 4) và (p2 - 4) ϵ {1;2;3;5;7;11;13...}
Ta thấy khi (p2 + 4) = 13 và (p2 - 4) = 5 thì p=3
Vậy p=3
Tìm 4 số nguyên tố liên tiếp và tăng dần p1 < p2 < p3 < p4 sao cho số q = p1 + p2 + p3 + p4 cũng là một số nguyên tố.
p1=2
p2=3
p3=5
p4=7
p1+p2+p3+p4=2+3+5+7=17 là số nguyên tố
đúng thì tk nha
Với p1=2 =>p2=3,p3=5,p4=7(do p1<p2<p3<p4) (1)
Với p1>2 suy ra tất cả chúng đều lẻ.Suy ra tổng của chúng là số chẵn lớn hơn 2 nên chia hết cho 2 hay là hợp số
Suy ra chúgn lần lượt là.........(1)
mik thiếu chỗ tổng 3 số như Đặng Yến Ngọc nhsa
Bài 2 (3,5 điểm)
1) Tìm số tự nhiên nhỏ nhất chia cho 5 dư 1, chia cho 7 dư 3.
2) Tìm số nguyên tố p sao cho p2 +4 và p2– 4 đều là số nguyên tố.
1: Gọi số cần tìm là a
Theo đề, ta có: a-1 chia hết cho 5 và a-3 chia hết cho 7
mà a nhỏ nhất
nên a=31
2: TH1: p=3
=>p^2+4=13 và p^2-4=5
=>NHận
Th2: p=3k+1
p^2-4=(3k+1-2)(3k+1+2)
=3(k+1)(3k-1)
=>Loại
TH3: p=3k+2
=>p^2-4=9k^2+12k+4-4
=9k^2+12k=3(3k^2+4k)
=>Loại
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố